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Crowd counting is a concerned and challenging task in computer vision. Existing density map based
methods excessively focus on the individuals’ localization which harms the crowd counting performance
in highly congested scenes. In addition, the dependency between the regions of different density is also
ignored. In this paper, we propose Relevant Region Prediction (RRP) for crowd counting, which consists of
the Count Map and the Region Relation-Aware Module (RRAM). Each pixel in the count map represents
the number of heads falling into the corresponding local area in the input image, which discards the
detailed spatial information and forces the network pay more attention to counting rather than localizing
individuals. Based on the Graph Convolutional Network (GCN), Region Relation-Aware Module is pro-
posed to capture and exploit the important region dependency. The module builds a fully connected
directed graph between the regions of different density where each node (region) is represented by
weighted global pooled feature, and GCN is learned to map this region graph to a set of relation-aware
regions representations. Experimental results on three datasets show that our method obviously outper-
forms other existing state-of-the-art methods.

� 2020 Elsevier B.V. All rights reserved.
1. Introduction

Crowd counting is the task of predicting the number of individ-
uals appearing in specific scenes. It serves as a fundamental tech-
nique for numerous computer vision applications, such as in
video surveillance, public safety, flow monitoring, traffic monitor-
ing, and scene understanding. It is also a challenging problem due
to the variations of density, scale, illumination and severe
occlusion.

Recently, with the development of convolutional networks
(CNNs), the performance of crowd counting algorithms has been
greatly improved. Existing approaches use a CNN to estimate the
density maps which represents both the spatial position and num-
ber of individuals and consequently couples the individuals’ local-
ization and counting. Although great progress has been made,
state-of-the-art density map estimation based methods still suffer
from two problems. Firstly, the density map excessively focuses on
the localization for its exhaustedly utilizing the spatial information
of the individuals’ location. It is unreasonable to force the network
to accurately localize the individuals in highly congested scenarios.
The reason is that each individual occupies too few pixels to be
localized, which consequently harms the performance. Further-
more, the size of the Gaussian Kernel, which is used to generate
the density map, is hard to adapt the variation in head scale and
significantly affect crowd counting performance. It is either too
small to make pedestrian of different scales distinguishable or
too large to separate the pedestrian from the background.

In addition, the previous approaches ignore the dependency
between the regions. They adopt multiple columns or multiple
regressors which major in specific regions, while regions of differ-
ent density are predicted independently. Actually, the regions of
different density are relevant in scenes. In congested scenes, the
crowd density per square meter in the physical world is approxi-
mately constant. Due to the perspective distortion, the density
changes approximate continuously along the direction away from
the camera. For different views, the perspective relation varies.
Moreover, the distribution of density in many scenes (such as
streets, square, stadium, etc.) is governed by configurational rules.
The relation can be utilized to further improve the crowd counting
performance. As shown in Fig. 1. The absolute error of the atten-
tional region decreases by utilizing the relation of regions.

To tackle the above two problems, we propose a novel method
called Relevant Region Prediction (RRP) for crowd counting, which
consists of two components i.e., Count Map and Region Relation-
Aware Module (RRAM). Each pixel in the count map represents
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Fig. 1. The prediction of the attentional region is refined by Region Relation-Aware Module. The first row shows the attentional region in the image and the attentional
ground truth. The second row shows the attentional prediction generated with RRAM (left) and without RRAM (right). By utilizing the relation of regions, the absolute error of
the attentional region decreases 14.8.
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the number of heads falling into the corresponding local area in the
input image and the area of adjacent pixels are overlapped with
each other. Thus, the network is only required to verify the pres-
ence of individuals in local area rather than accurately localize
them, which forces the network to pay more attention to counting
than localization. Furthermore, the system performance is robust
to the area size. The Region Relation-Aware Module (RRAM) is pro-
posed to capture the region dependency by leveraging the power of
the Graph Convolutional Network (GCN). Specifically, we represent
the regions by weighted global pooled feature and build a fully
connected directed graph between these regions representations
to explicitly model their correlations. Then a GCN is learned to
propagate information between different regions and consequently
generate a set of relation-aware region representation. The weight
of each edge is adjusted adaptively and thus the relationships
between different regions are captured. Then these region repre-
sentation are remapped to the original feature space and fused
with the input feature for the more accurate prediction. Experi-
ments show that our Count Map performs better than the density
map and the Region Relation-Aware Module further improves the
accuracy of the prediction.

Our contributions are threefold:

� We propose a novel labeling scheme, termed Count Map, which
discards the detailed spatial information and forces the network
pay more attention on counting rather than localizing
individuals.

� We design a novel region relation-aware module, which lever-
ages the power of graph convolution network to capture and
exploit the relations between regions of different density.

� We comprehensively evaluate our model on three crowd
counting benchmark datasets, and our model consistently
achieves superior performance over previous state-of-the-art
methods.
2. Related work

In this section, we will introduce the related work on crowd
counting and graph convolutional network.
2.1. Crowd counting

Various methods have been proposed for crowd counting and
density estimation [1–4]. Early researches adopted detection based
methods using a body or part-based detector to detect people and
count the number [5]. These methods are easily affected by occlu-
sions and background clutters in highly congested scenes. To
address the issues of occlusion and clutter, researchers try to
deploy regression-based methods to learn a mapping from the
image to the count [6–8]. Regression based methods performed
well in tackling the occlusion and clutter problems. However, they
ignored the spatial information due to the regression to one count.

Most recently, density map estimation is commonly used for
crowd counting. Lempitsky et al. [9] propose to learn a linear map-
ping between local region features and corresponding object den-
sity maps by regression. Observed the difficulty of learning a linear
mapping, Pham et al. [10] proposed a method which uses random
forest regression to learn a non-linear mapping. After that, due to
the success of deep learning, convolutional neural network(CNN)
is applied for density estimation. To cope with the scale variation,
Zhang et al. [11] adopt multiple columns with different receptive
fields by adopting different sizes of filters to adapt to variable tar-
get sizes. Sam et al. [12] further propose switch-CNN which choose
a particular column for input patches by a density level classifier.
Sindagi et al. [13] propose CP-CNN which incorporate global con-
text information and local context information to the multi-scale
feature to generate the high-quality density map. The scale diver-
sity is limited by the number of columns, [14] increase the scale
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diversity by stacking the scale aggregation modules which combi-
nes filters of different sizes. Liet al. [15] demonstrate that a deeper
network performs better than MCNN with a similar amount of
parameters and adopt a single column architecture with dilated
convolutions to deliver larger reception. Observing that the detec-
tion based method and density estimation based method are
expert in different scenes, Liuet et al. [16] proposed DecideNet
which adaptively choose appropriate counting method at different
locations. Deepak Babu Sam and Sajjan [17] adopt multiple regres-
sors which experts on the certain type of crowd to adapt with the
huge diversity in images, the regressors are fine-tuned on the
respective sub-dataset divided by a differential training procedure.
She et al. [18] learn a pool of decorrelated regressors to improve
the generalization ability by managing their intrinsic diversities.
Idrees and Tayyab [19] adopt multiple labels which include the
count, density map and location, for the reason that the three
statistics are related to each other. Xialei and van de Weijer [20]
learns from the unlabeled data based on the prior that the sub-
image contains the same number or fewer person than the
super-image.
2.2. Graph convolutional network

There is an increasing interest in generalizing convolutions to
the graph domain, for a comprehensive review, cf. [21]. Advances
in this direction are often categorized as spectral approaches and
non-spectral approaches. Spectral approaches [22] work with a
spectral representation of the graphs. The convolution operation
was defined in the Fourier domain by computing the eigendecom-
position of the graph Laplacian. Non-spectral approaches defined
convolutions directly on the graph, operating on spatially close
neighbors. Hamilton et al. [23] proposed the GraphSAGE which
generated embeddings by sampling and aggregating features from
local neighborhood nodes. Recently, GCN was explored in a wide
range of area such as image classification [24], text classification
[25], neural machine translation [26]. Specifically, [24] builds a
directed graph where each node corresponds to an object label
and takes the word embeddings of nodes as input for predicting
Fig. 2. Overall framework of our proposed model for crowd counting. The input images
pooling to obtain the regions representations of different density. A directed graph is buil
the graph, a graph convolutional network (GCN) is learned to propagate information b
consequence, GCN generates relation-aware regions representations of different density
generated via applying a bilinear upsample layer on the features generated by GCN modu
and ground-truth count map.
the classifier of different categories. Yao et al. [25] regards the doc-
uments and words as nodes and uses the Text GCN to learning
embeddings of words and documents. Beck et al. [26] modified
the syntactic dependency graph by turning the edges into addi-
tional nodes and thus edge labels can be represented as
embeddings.

3. Proposed methods

The overall framework of our approach is shown in Fig. 2. The
input image is fed into a convolutional neural network to extract
the appearance feature. Region relation-aware module takes this
feature as input and output a relation-aware feature by leveraging
the power of graph convolutional network. Then the relation-
aware feature is used to predict our proposed count map and a
regression loss is enforced to penalize the difference between the
prediction and the ground-truth.

3.1. Count map labeling

We propose a novel labeling scheme termed as Count Map to
replace the commonly used density map. In standard crowd count-
ing datasets, each training image is annotated with a set of 2D
points p1; . . . ; pmf g, where m is the total number of individuals.
Our count map can be constructed from a location map L, with
L pið Þ ¼ 1 and 0 otherwise. Then a 2D sum pooling operation
SumPool2d �ð Þ is applied over the location map L to generate our
Count map C:

C ¼ SumPool2d L; r; sð Þ; ð1Þ
where r and s is the size and stride of the pool window respectively.
In all the experiments, we set s ¼ 1

2 r. Naturally, when inference we
calculate the integral of the count map and divide it by four as the
crowd count.

To understand the advantage of our count map, we can consider
taking the generation of count map to two extremes with regard to
the size of the pool window r. The one extreme is a very large r.
Thus, our count map is reduced to a single value which is equal
are fed to CNNs to obtain the appearance feature X. Then we use weighted global
t over these regions representations to explicitly model their relationships. Based on
etween regions of different density and further exploit the region dependency. In
which encode both relations and appearance information of regions. Count map is
le and a ‘2 loss are enforced to penalize the difference between predicted count map
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to the total number of individuals m. At this extreme, the network
is trained discarding all the spatial information provided by the
individuals’ location. The other extreme is r ¼ 1. Here, our count
map is equal to the location map which represents both spatial
position and number of individuals. Especially, density map is gen-
erated by convolving the location map with a normalized Gaussian
Kernel to provide a smoother training gradient. Yet, the essential
idea behind the location map and density map, exhaustedly utiliz-
ing the spatial information of the individuals’ location, is the same.
Although the better performance of the later extreme has demon-
strated the importance of the spatial information, it is still subop-
timal in highly congested scenarios where each individual occupies
few pixels that it is neither localized by network nor annotated by
human. Thus, forcing the network to accurately localize the indi-
viduals is inappropriate and consequently harms the performance.

By choosing a proper window size r, our count map balances
above two extremes. On the one hand, spatial information is uti-
lized by training the network to predict the number of individuals
located in different areas. On the other hand, the network is only
required to verify the presence of individuals rather than accu-
rately localize them. Experiments in Section 4.4 show that our
count map outperforms both extremes by finding a balance
between them.

3.2. Region relation-aware module

The density of people, i.e., the number of people per unit area, is
relevant in different regions of the image. In congested scenes, the
crowd density per square meter in the physical world is approxi-
mately constant. Due to the perspective distortion, the density
changes approximate continuously along the direction away from
the camera. For different views, the perspective relation varies.
Moreover, the distribution of density in many scenes (such as
streets, square, stadium, etc.) is governed by configurational rules.
Consequently, the relevant can be utilized to refine the density of
one region by the regions dominating the network. Due to the suc-
cess of graph convolution network to model the relationship of dif-
ferent nodes, we utilize it to capture the relation of density in
different regions.

3.2.1. Graph convolutional network recap
Graph Convolution Network (GCN) was introduced in [27] to

perform semi-supervised classification on graph-structured data.
The essential idea is to update the node representations by propa-
gating information between nodes.

Different from the standard convolutional operations, the goal

of GCN is to learn a function f l �ð Þ on a graph G which takes an adja-

cency matrix A 2 Rn�n and a feature description Hl
v 2 Rd for every

node v at lth layer as inputs. Let Hl denote the n� d feature matrix
obtained by stacking together all the node feature description of
the graph G. n is the number of nodes and d is the dimension of fea-

tures. Then it produces a node-level output Hlþ1
v 2 Rd0 for every

node v . Every neural network layer can then be written as a non-
linear function:

Hlþ1 ¼ f l Hl;A
� �

: ð2Þ

Specifically, [27] adopts the convolutional operations for each layer
in the network f �ð Þ can be represented as

Hlþ1 ¼ g bAHlWl
� �

; ð3Þ

where Wl 2 Rd�d0 is a learned transformation and bA is the normal-
ized version of the adjacency matrix A of the graph, with n� n
dimensions. g �ð Þ denotes the nonlinear operation. In our experi-
ments, g �ð Þ is acted by ReLU and the output dimension d0 is always
equal to the input dimension d.

3.2.2. Region relation modeling
The input of our Region Relation Module is a 3-D tensor X which

consists of a set of feature maps and generated by the representa-
tion learning module. A 1� 1 convolution / �ð Þ is used to reduce
channel dimension of the input feature maps X and then the initial
density description zv 2 Rd of region v is generated by applying a
weighted global pooling on / Xð Þ.
zv ¼ GAP Wv � / Xð Þð Þ; ð4Þ
where GAP �ð Þ is global average pooling operation and � represents
the channel-wise Hadamard matrix product operation.
Wv ¼ hv Xð Þ is the attentional map for region v, where hv �ð Þ is
1� 1 convolution with output channel 1. In a specific attention
map, the region which has similar attributes (for example, pedes-
trian scale) will be activated. By learning different weights, different
regions will be activated in different attention maps. After the
weighted global pooling, we obtain the features attending different
regions.

Then graph convolution network is employed to model the rela-
tions between density of different regions. The input of GCN is the
set of attended regions and their corresponding initial density
description. For the output we want to predict a set of relation-
aware region density descriptions.

We construct a fully connected directed graph where each node
represents an attended regions. Then relationships between differ-
ent regions are learned by adjust the weight of each edge adap-
tively. Thus, the n� n adjacency matrix A, representing the graph
structure, is optimizable and randomly initialized. Furthermore,
we add an identity matrix to A, which forces each node to pay more
attention to itself at the beginning of training.

Each layer l of GCN takes the feature representation from previ-
ous layer Hl as input and outputs a new feature representation
Hlþ1. For the first layer, the input is Z ¼ zvf gnv¼1 which is generated
by weighted global pooling. For the final layer, the output feature
vector is HL which has the same size of Z. L is the number of
GCN layers.

After GCN, we use an attentional map to broadcast each node
feature into a 3-D tensor and then add all generated 3-D tensors
together.

X0 ¼
X
8v

broadcast HL
v

� ��Wv ; ð5Þ

where broadcast �ð Þ transforms the input vector to a 3-D tensor by
placing it in every position and Wv is the same attentional map
used in weighted global pooling. Then we apply a 1� 1 convolution
to expand the channel dimension of feature maps X0 and fuse it with
the input feature maps X by addition. The module is applied
between after the end of VGG.

3.3. Learning

The overall model consists of CNN and a RRAM module. A bilin-
ear upsample layer is applied on the output feature maps of RRAM
to generate the count map. The ‘2 loss is enforced to penalize the
difference between the predicted count map and the ground truth
count map:

Lreg ¼ 1
N

XN
i¼1

kF Ii;Hð Þ � Cik22; ð6Þ

where H refers to the set of learnable parameters. Ii is the input
image. F Ii;Hð Þ denotes the estimated count map for image Ii. Ci is
the corresponding ground truth count map of image Ii. N is the



Table 2
Ablation study on ShanghaiTech Part A [11] dataset.

Methods MAE MSE

Density map 70.5 115.2
Count map 65.3 109.9
Count map + RRAM 63.2 105.7
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number of training images. Lreg is the regression loss between the
ground truth count map and the estimated count map. To accelerate
the convergence, we assist the regression loss with a cross-entropy
loss which is defined as:

Lcls ¼
XN
i¼1

XM
j¼1

�
XC
k¼1

yijklog pijk

� �
: ð7Þ

where N is the number of training images.M is the number of pixels
in the image. C is the number of category. pijk refers to the predicted
probability. yijk is the indicator variable. If the pixel belong to class
k, yijk ¼ 1. Otherwise, yijk ¼ 0. The overall objective function is
defined as:

L ¼ Lreg þ Lcls: ð8Þ
4. Experiments

In this section, we first introduce the implementation details
and evaluation metrics. Then, we report the comparison results
in three popular crowd counting benchmark datasets. In the fol-
lowing, ablation studies and visualization analyses are presented.

4.1. Training details

We adopt the modified VGG-16 network as our backbone for its
strong transfer learning ability. To make the structure adapt to
arbitrary resolution, we remove the three fully-connected layer.
Considering the tradeoff between accuracy and resource cost, we
remove the last two pooling layers. The RRAM is applied at the
end of VGG followed by a bilinear upsample. Then two branches
are applied for a regression task and a classification task, with
(conv-3-256)-(conv-1-k) and (conv-3-256)-(conv-1-1) respec-
tively. (conv-kernel size-channel) denotes the convolution param-
eter, k denotes the number of categories.

We conduct the experiments on three public datasets. For each
image in the training set, we augment it by randomly cropping 9
patches with 1/4 size of the original image, and then flipping each
patch in the horizontal direction. We implement our model based
on the PyTorch framework. In all the experiments, we set the win-
dow size r ¼ 8 to generate the count map and use a single-layer
GCN in RRAM for the better performance. The related experiments
are shown in Table 1–6. We set the batch size as 1 and employ
stochastic gradient descent (SGD) as the optimizer with a fixed
learning rate. To cope with the overfitting, we employ L2 regular-
ization with the weight decay at 0.0005. The layers introduced
Table 1
Comparison with state-of-the-art methods on ShanghaiTech [11] dataset.

Part_A

Method MAE

Zhang et al. [1] 181.8
Marsden et al. [29] 126.5
MCNN [11] 110.2
Cascaded-MTL [30] 101.3
Switching-CNN [13] 90.4
DecideNet [16] -
SaCNN [31] 86.8
ACSCP [32] 75.7
CP-CNN [13] 73.6
IG-CNN [17] 72.5
Liu et al. [20] 72.0
ic–CNN [33] 68.5
CSRNet [15] 68.2
PSDDN + [34] 65.9
RRP (Ours) 63.2
from the VGG-16 are initialized with the weight of public-
released ImageNet pre-trained model. The other layers adopt
Gaussian initialization with 0.01 standard deviation.

4.2. Evaluation metrics

Following the previous works [1,11,12,28,45], we evaluate the
performance via the mean absolute error (MAE) and mean square
error (MSE) which are defined as:

MAE ¼ 1
N

XN
i¼1

jzi � ẑij: ð9Þ

MSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

jzi � ẑij2
vuut ; ð10Þ

where N is the number of test images, zi represents the actual num-
ber of people in the ith image, and ẑi represents the estimated count
in the ith image. The estimated count is calculated by integrating
the estimated count map. Roughly speaking, MAE indicates the
accuracy of the estimation, and MSE indicates the robustness of
the estimation [11].

4.3. ShanghaiTech dataset

The ShanghaiTech dataset [11] is a large-scale crowd counting
dataset which consists of 1198 annotated images with a total of
330,165 people. This dataset consists of two Parts: Part_A includes
482 images in highly congested scenes with counts ranging from
33 to 3139, while Part_B includes 716 images in relatively sparse
scenes with counts ranging from 9 to 578. Following [11], we use
300 images for training and 182 images for testing in Part_A, 400
images for training and 316 images for testing in Part_B.

We compare our method with previous state-of-art methods on
the ShanghaiTech dataset. All the detailed results are illustrated in
Table 1. It indicates that our method achieves the lowest MAE in
both Part A and Part B compared to other methods. Examples are
Part_B

MSE MAE MSE

277.7 32.0 49.8
173.5 23.8 33.1
173.2 26.4 41.3
152.4 20.0 31.1
135.0 21.6 33.4
- 20.75 29.42
139.2 16.2 25.8
102.7 17.2 27.4
106.4 20.1 30.1
118.2 13.6 21.1
106.6 14.4 23.8
116.2 10.7 16.0
115.0 10.6 16.0
112.3 9.1 14.2
105.7 9.4 13.9



Table 3
Comparison with different labeling scheme on ShanghaiTech Part A [11] dataset.

MCNN CSRNet

Density map Count map Density map Count map

MAE 99.5 93.2 67.3 64.1
MSE 150.8 145.0 109.2 101.3

Table 4
Ablation study of Classification on ShanghaiTech Part A [11] dataset.

Methods MAE MSE Epoch

Count map without Classification 66.6 110.1 79
Count map with Classification 65.3 109.9 52
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shown in Fig. 3 and 4. Our model performs better than CSRNet [15]
which also adopts VGG-16 as backbone and applies several dilated
convolutions as the backend to deliver larger reception. The better
performance denotes the effectiveness of our methods.

We visualize the attentional regions of two related nodes. As
shown in Fig. 3, the node which concentrates on the region near
the camera is related to the node which concentrates on the region
away from the camera.
4.4. Ablation study on ShanghaiTech Part_A

In this section, we conduct an ablation study on ShanghaiTech
Part_A dataset. A modified VGG-16 backbone appended a regres-
sion branch with density map output is used as our baseline which
achieves 70.6 MAE and 115.2 MSE. The overall results are shown in
Table 2. Based on the baseline network, we analyze each compo-
nent of our model, i.e., count map, Region Relation-Aware Module
(RRAM) and classification, by comparing the MAE and MSE. We
also conduct experiment on two important parameters, i.e., the
area size r and the number of GCN layers L.
4.4.1. Count map
We first evaluate the effect of our count map where each pixel

represents the count in 8� 8 area. By replacing the density map in
the baseline model as our count map, we get the MAE of 65.3 and
the MSE of 109.9, which is about 5.2 MAE and 5.3 MSE lower than
the baseline model. The significant improvement demonstrates the
effectiveness of count map. We also apply the count map to other
classical methods. We implement CSRNet and MCNN and obtain
better performance than the original ones. As shown in Table 3,
the application of the Count Map can bring improvement on both
CSRNet and MCNN.
Table 6
Comparison with number of GCN layers on ShanghaiTech Part A [11] dataset.

Layer 0-layer 1-layer 2-layer 3-layer

MAE 65.0 63.2 63.6 64.7
MSE 107.6 105.7 104.5 108.9
4.4.2. RRAM
To justify the contribution of the Region Relation-Aware Mod-

ule, we embed it after the end of the modified VGG-16 backbone.
By utilizing the correlation of regions of different densities, the
predicted count is adjusted to a more accurate value. The MAE
decreases from 65.3 to 63.2 and MSE decreases from 109.9 to
105.7, which validates the effectiveness of the RRAM module.
Examples of comparable prediction are shown as Fig. 5.
Table 5
Comparison with different area sizes on ShanghaiTech Part A [11] dataset.

Area size 4� 4 8� 8

MAE 67.8 65.3
MSE 112.0 109.9
4.4.3. Classification
To analyze the effect of classification, we conduct ablation study

on classification. The results are summarized in Table 4. We can
observe that the classification can accelerate the convergence
and has minor effects on the final performance.

4.4.4. Area size
We conduct experiments to explore the influence of area size r

to the performance. We upsample (or downsample) the feature
maps output by the last convolutional layer of the modified
VGG-16 backbone to match the size of different count map. Results
are shown in Table 5. The count map with r ¼ 8 obtains the best
performance by finding a perfect balance. In comparison, a larger
area size which focuses more on counting and a smaller area size
which pay more attention to localization lead to worse results.
Based on above observation, the hyper-parameter r can be set by
gradually squeezing the range from two extremes. Note that, the
count map with r ¼ 32 still performs better than the density map
with significantly less computation. We can observe that the
MAE varies between 65.3 and 67.8 when the area size changes
from r ¼ 4 to r ¼ 32, which indicates that the performance of our
count map is robust to the variation in area size.

4.4.5. Number of GCN layers
We also conduct experiments to explore the effects of different

numbers of GCN layers. As shown in Table 6, when the number of
graph convolution layers increases, the crowd counting perfor-
mance decreases. MAE increase 0:4 and 1:5 when a graph convolu-
tional layers is added incrementally on a single GCN in RRAM
module. This is probably caused by the over-smoothing problem
as GCN going deeper. After GCN, the feature of each node will be
the weighted sum of its own feature and the adjacent node’s fea-
tures, and consequently is too smoothed to be distinguishable.

4.5. The UCF_CC_50 dataset

The UCF_CC_50 dataset [35] contains 50 images in extremely
congested scenes. The counts range from 94 to 4543 with an aver-
age of 1280 individuals per image. It is an extremely challenging
dataset due to the small dataset size, large variance in crowd count,
congested scenes and large-scale change. Following the work of
[35], we perform 5-fold cross validation on this dataset.
16� 16 32� 32

66.1 67.2
107.3 109.2
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Our method is evaluated and compared with previous state-of-
art methods. The results are summarized in Table 7, it can be seen
that our model significantly outperforms the state-of-the-art
methods. We also conduct the ablation study on UCF_CC_50 data-
set. Results are shown in Table 8.
4.6. The UCF-QNRF dataset

The UCF-QNRF dataset consists of 1535 challenging images with
1,251,642 annotations from Flickr, Web Search and Hajj footage.
The training and test set consist of 1201 and 334 images, respec-
tively. In the dataset, the median and mean counts are 425 and
815.4, respectively, and the minimum and maximum counts are
49 and 12,865, respectively, making this dataset suffering the lar-
Fig. 3. The attentional regions of two related nodes. The first column shows images in th
on the region near the camera. The last column shows the corresponding node which c

Fig. 4. Examples on ShanghaiTech Part A [11] dataset. The first row shows images in th
shows the generated count map. The prediction is normalized together with the ground
gest crowd variation. The average image resolution is larger than
other datasets, causing the absolute size of a person head to vary
drastically from a few pixels to more than 1500.

In the whole dataset, we downsample the images to make the
resolution not exceed 1080� 1920 without changing the aspect
ratio. The results of our method and previous state-of-art methods
are shown in the Table 9. Examples are shown in Fig. 6. Compared
to the state-of-the-art methods, our model achieves significant
improvement with 25.9% lower MAE and 18.3% lower MSE. We
also conduct the ablation study on UCF-QNRF dataset. Results are
shown in Table 10. The ablation study of window size r is also con-
ducted. From Table 11. We can observe a similar trend as on
ShanghaiTech_A dataset, that a larger area size to focus more on
counting or a smaller area size to pay more attention to localiza-
tion leads to worse results.
e testing set. The second column shows the corresponding node which concentrates
oncentrates on the region away from the camera.

e testing set. The second row shows the corresponding ground truth. The third row
truth to obtain the heat map.



Table 7
Comparison with state-of-the-art methods on UCF_CC_50 [35] dataset.

Method MAE MSE

Idrees et al. [35] 419.5 541.6
Zhang et al. [1] 467.0 498.5
MCNN [11] 377.6 509.1
Onoro et al. [36] Hydra-2s 333.7 425.2
Onoro et al. [36] Hydra-3s 465.7 371.8
Walach et al. [37] 364.4 341.4
Marsden et al. [29] 338.6 424.5
Cascaded-MTL [30] 322.8 397.9
Switching-CNN [12] 318.1 439.2
SaCNN [31] 314.9 424.8
CP-CNN [13] 295.8 320.9
ACSCP [32] 291.0 404.6
IG-CNN [17] 291.4 349.4
AMDCN [38] 290.82 -
Liu et al. [20](Keyword) 279.6 388.9
CSRNet [15] 266.1 397.5
ic–CNN [33] 260.9 365.5
TEDnet [39] 249.5 354.5
SD-CNN [40] 235.74 345.6
RRP(Ours) 216.3 316.6

Table 8
Ablation study on UCF_CC_50 [35] dataset.

Methods MAE MSE

Density map 239.0 333.1
Count map 228.9 320.9
Count map + RRAM 216.3 316.6

Table 9
Comparison with state-of-the-art methods on UCF-QNRF [19] dataset.

Method MAE MSE

Idrees et al. [35] 315 508
MCNN [11] 277 426
Encoder-Decoder [41] 270 478
CMTL [30] 252 514
Switching-CNN [12] 228 445
Resnet101 [42] 190 227
DenseNet201 [43] 163 226
Idrees et al. (2018) [19] 132 191
RAZ_fusion [44] 116 195
TEDnet [39] 113 188
RRP(Ours) 93 156

Fig. 5. Examples on ShanghaiTech Part A [11] dataset. The first column shows the images. The second column shows the prediction of count map with RRAM. The third
column shows the prediction of count map without RRAM. The absolute error is shown on the picture.
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5. Conclusions

Existing density map based methods excessively focused on the
individuals’s localization which harmed the crowd counting per-
formance in highly congested scenes. In addition, capturing the
correlation between regions of different density is a crucial issue
for crowd counting, which is ignored by previous methods. In this
paper, we propose Relevant Region Prediction (RRP) for crowd
counting, which consists of the Count Map and the Region
Relation-Aware Module (RRAM). Count map is a novel labeling
scheme, where each pixel represents the number of head falling
into the corresponding r � r area in the input image. Thus detailed
spatial information is discarded, which force the network pay more
attention to counting rather than localization. Based on the Graph
Convolutional Network (GCN), Region Relation-Aware Module
(RRAM) builds fully connected directed graph between the regions
of different density, where each node (region) is represented by
weighted global pooled feature. Then GCN mapped the region
graph to a set of relation-aware regions representation. The weight
of each edge is adjusted adaptively and thus relationships between
different regions is captured. Both quantitative results and qualita-
tive visualization validate the effectiveness of the proposed
method.
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Table 10
Ablation study on UCF-QNRF [19] dataset.

Methods MAE MSE

Density map 111 182
Count map 98 168
Count map + RRAM 93 156

Table 11
Comparison with different area sizes on UCF-QNRF [19] dataset.

Area size 4� 4 8� 8 16� 16 32� 32

MAE 101 98 106 109
MSE 178 168 177 190

Fig. 6. Examples on UCF-QNRF [19] dataset. The first row shows the images. The second row shows the corresponding ground truth. The third row shows the generated count
map. The prediction is normalized together with the ground truth to obtain the heat map.
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