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Abstract

Crowd counting is a concerned yet challenging task in
computer vision. The difficulty is particularly pronounced
by scale variations in crowd images. Most state-of-art ap-
proaches tackle the multi-scale problem by adopting multi-
column CNN architectures where different columns are de-
signed with different filter sizes to adapt to variable pedes-
trian/object sizes. However, the structure is bloated and in-
efficient, and it is infeasible to adopt multiple deep columns
due to the huge resource cost. We instead propose a Scale
Pyramid Network (SPN) which adopts a shared single deep
column structure and extracts multi-scale information in
high layers by Scale Pyramid Module. In Scale Pyramid
Module, we specifically employ different rates of dilated
convolutions in parallel instead of traditional convolutions
with different sizes. Compared to other methods of coping
with scale issues, our single column structure with Scale
Pyramid Module can get more accurate estimation with
simpler structure and less complexity of training. And our
Scale Pyramid Module can be easily applied to a deep net-
work. Experimental results on four datasets show that our
method achieves state-of-the-art performance. On Shang-
haiTech Part A dataset which is challenging for its highly
congested scenes and scale variation, we achieve 9.5%
lower MAE and 13.5% lower MSE than the previous state-
of-the-art method. We also extend our model on TRAN-
COS vehicle counting dataset and significantly achieve
5.9% lower GAME(0), 10% lower GAME(1), 24.5% lower
GAME(2), 38.7% lower GAME(3) than the previous state-
of-the-art method. The experimental results prove the ro-
bustness of our model for crowd counting, especially with
scale variations.

1. Introduction

Crowd counting has gained an increasing interest for its

applications in video surveillance [3, 8], public safety, flow
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Figure 1. Samples in the ShanghaiTech Part A dataset [40].The

scale varies significantly within the scene and between scenes.

monitoring, traffic monitoring, and scene understanding. It

is a challenging task due to various cases such as intra-scene

and inter-scene variations in scale, occlusions, non-uniform

distribution, illumination variation. In this paper, we pro-

pose a novel architecture mainly coping with the scale vari-

ations, as shown in Fig. 1, which significantly influence the

performance.

Previous approaches basically adopt three kinds of meth-

ods to address this issue, i.e. multi-column-based methods,

image pyramid-based methods, and multi-level feature-

based methods, as shown in Fig. 2(a)(b)(c). Recently most

state-of-art work adopt the first kind of methods which em-

ploy multi-column CNN architectures [7, 20, 23, 31, 40]

where different columns are designed with different filter

sizes to adapt to variable scales. They extract multi-scale

features from the original images in early layers and then

process the features of particular scale respectively. Al-

though this kind of methods has shown robust performance,

they still have two significant disadvantages mainly caused

by the multi-column structure and the large-sized filters.

First, the multi-column structure is bloated and increases

the number of parameters, which are also increased expo-

nentially when using large-sized filters in the column. The
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Method Parameters MAE MSE

MCNN 127.68k 110.2 185.9

Col.3 of MCNN-SPM-C 55.04k 95.0 139.9

Col.3 of MCNN-SPM-A 44.68k 94.2 150.2

Table 1. Comparative experiments on ShanghaiTech Part A [40].

The architecture of Col.3 of MCNN-SPM-C/A is: CR(24,5)-M-

CR(48,3)-M-CR(24,3)-(SPM-C/A)-CR(12,3)-CR(1,1). CR(m,n)

means the convolution layer with m filters whose size is n × n
followed by the ReLu layer. M is the max pooling layer.

increased parameters lead to the increase of training time

and computation amount. Secondly, the structure needs the

pre-training of every single column according to the training

strategy described in [40], which is complex and also leads

to the increase of training time. Moreover, the large-sized

filters make the network hard to train. The above disadvan-

tages make it infeasible to apply the multi-column structure

to a deep network, while a deeper network has been proved

to have better performance in crowd counting [18].

By observing the feature maps generated by Multi-

Column Convolutional Neural Network (MCNN) [40], we

found the low-level features from the same depth of differ-

ent columns are similar. Hence, we adopt only one column

of MCNN and extract multi-scale features from the high-

level feature (as shown in Fig. 2 (d)). Moreover, we discard

the large-sized filters. When extracting multi-scale features,

we design a Scale Pyramid Module (SPM) to deliver multi-

ple receptive fields with fewer parameters. The module em-

ploys multiple parallel dilated convolutions with different

rates instead of different sizes of traditional convolutions.

Specifically, we select the third column which adopts

small kernels as our backbone and embed the SPM, which

employs four parallel dilated convolutions with rates as 2,

4, 8, 12, between the third convolution and the forth con-

volution. Each dilated convolution in SPM has the same

number of channels as the input features. Then the features

generated by SPM merged together by concatenation or ad-

dition. We denoted the model with concatenation as Col.3

of MCNN-SPM-C, and the model with addition as Col.3 of

MCNN-SPM-A. We conduct experiments on ShanghaiTech

Part A dataset [40]. The results are shown in Table 1. Com-

pared to MCNN, both the two models perform significantly

better with significantly fewer amounts of parameters.

We further apply the method to a deeper network to ob-

tain a better performance. We choose VGG-based structure

as our backbone and construct the Scale Pyramid Network

(SPN). We conduct experiments on four public datasets.

Our SPN outperforms the previous state-of-art approach

called CSRNet [18] with 9.5%, 11.3%, 2.6% lower mean

absolute error (MAE), 13.5%, 10.0%, 15.5% lower mean

square error (MSE) on ShanghaiTech [40]Part A, Part B,

UCF CC 50 datasets [10] respectively. Moreover, we ex-

tend our method to vehicle counting on the TRANCOS

dataset [24] and achieve 5.9% lower GAME(0), 10% lower

GAME(1), 24.5% lower GAME(2), 38.7% lower GAME(3)

than the state-of-art result generated by CSRNet.

Compared to other methods of coping with scale issues,

our single column structure with Scale Pyramid Module is

more efficient, more effective and easier to train. The in-

troduced Scale Pyramid Module enhances the robustness

against scale variation with only a small increase in com-

plexity and can be applied to the deep structure.

2. Related Work
Various methods have been proposed for crowd count-

ing and density estimation [2, 13, 21]. Most of the early re-

searches adopted detection-based methods using a moving-

window-like detector to detect people and count the num-

ber [25]. These methods were easily affected by occlusions

and high clutter in the background. Recent methods can be

classified into three categories: Regression-based methods,

density estimation-based methods, and CNN-based meth-

ods. Here we mainly review the three categories of meth-

ods.

2.1. Regression-Based Methods

To address the issues of occlusion and clutter, re-

searchers try to deploy regression-based methods to learn

a mapping from various features extracted from local image

patches to object counts [4, 12]. They fist extract low-level

feature and then perform regression modeling. Handcrafted

features, like edge features and texture features [1, 12], are

used to generate low-level information. For example, Idrees

et al. [9] proposed a model to extract features by employing

Fourier analysis and SIFT interest-point.

2.2. Density Estimation-Based Methods

Regression-based methods performed well in tackling

the occlusion and clutter problems. However, they ignored

the spatial information due to the regression to one count.

Hence, Lempitsky et al. [17] introduced a new method

which learns a linear mapping between local region fea-

tures and corresponding object density maps by regression.

Since it is difficult to learn an ideal linear mapping, Pham

et al. [33] proposed a method which uses random forest re-

gression to learn a non-linear mapping. After that, many

approaches adopt density map regression for crowd count-

ing [26, 32, 36, 38].

2.3. CNN-Based Methods

Recently, the success of convolutional neural net-

work(CNN) in computer vision has inspired researchers to

apply them to density estimation. According to the way

tackling the multi-scale problems, we divide the existing
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Figure 2. Overview of existing methods coping with scale changes. (a) Multi-column-based methods. (b) Image pyramid-based methods.

(c) Multi-level feature-based methods. (d) Our method.

methods into three categories as multi-column-based meth-

ods, image pyramid-based methods, multi-level feature-

based methods, as shown in Fig. 2 (a)(b)(c).

(a)Multi-column-based methods: This method adopts

multiple columns which have different receptive fields by

adopting different sizes of filters to adapt to variable tar-

get sizes. Typical examples include Zhang et al. [40] who

adopt three columns with small, medium, large kernels re-

spectively and merge them in the end to generate the density

map. Based on Zhang’s architecture, Sam et al. [7]proposed

the switch-CNN which uses a density level classifier to

choose the suitable column for particular input patches.

And Sindagi et al. [31] proposed the CP-CNN which adds

an image-wise density level classifier to get global context

information for achieving lower count error, and a patch-

wise density level classifier to get local context information

for achieving better quality density map. Most recently, Deb

et al. [5] incorporate dilated filters into the multi-column

structure, where different columns adopt different rates of

dilation convolutions.

(b)Image pyramid-based methods: This method crops

patches from the multi-scale pyramidal representation of

each image as inputs to provide the multi-scale information

to the learnable network. The patches from small scaled im-

ages contain more global information, while patches from

large scaled images preserve more details. Typical exam-

ples include Õnoro − Rubio et al. [23] who proposed the

HydraCNN which present differently scaled patches of one

image to the corresponding column and then merge the fea-

tures to incorporate multi-scale, global information. Also

Boominathan et al. [20] adopt the image pyramid based

method for data argumentation. The main drawback of

these methods comes at the cost of computing features re-

sponses at all layers for multiple scaled versions of the input

images.

(c)Multi-level feature-based methods: This method

extract features of multiple levels to utilize information of

different characteristics or different scales. For example,

Boominathan et al. [20] utilizes a shallow network to recog-

nize the low-level head blob patterns which are arisen from

people away from the camera and a deep network to capture

the details of people near the camera. The two columns uti-

lize the different characteristics of different scales respec-

tively to cope with the intra-scene scale changes. In the

end, the multi-level features are merged to map the density

map. Zhang et al. [16] combine the features from multi-

ple layers of a single column structure, which based on the

method that different layers have different receptive fields

corresponding different scales. However, the improvement

is not obvious in congested scenes, where the scale changes

exist significantly. This kind of method is widely used in se-

mantic segmentation and target detection task. However, it

may not suitable for crowd counting for the reason that low-

level feature contains more edge information, which may

disturb the estimation due to the non-uniform distribution

of edge caused by scale changes.

3. Proposed Method
3.1. SPN Architecture

Most state-of-art approaches address multi-scale issues

by adopting multi-column architectures with different fil-

ter sizes. They extract multi-scale features from original

images in early layers and then process particular scale of

features respectively. Finally, the multi-scale features are

merged together to map to the density map. However,

the structure is bloated and inefficient. It is infeasible to

deploy multiple deep columns due to the huge resource
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cost including training time, parameter numbers, memory

consumption and computation amount. While a deep net-

work has been proved to have a good performance [18] in

crowd counting. By observing the feature maps generated

by MCNN [40], we found the low-level features from the

same depth of different columns are similar, which encode

low-level spatial visual information like edges, circles, etc.

Therefore, we employ a single column structure as shared

backbone and extract multi-scale features from high-level

features in high layers, the experiment described in Intro-
duction has shown that the method is more effective and

efficient with fewer parameters than multi-column-based

method.

We adopt VGG-16 [29]-based network as our backbone

for its strong transfer learning ability. The original VGG-

16 network have five pooling layers which can enlarge

the receptive field and reduce the amount of computation,

but leads to the loss of spatial information. Considering

the tradeoff between accuracy and resource cost, we re-

move the last two pooling layers. To extract high-level fea-

tures of multiple scales, we design a Scale Pyramid Mod-

ule and embed the module between conv4 3 and conv5 1.

Experiments show that deployment with the location be-

tween conv4 3 and conv5 1 performs better than it between

conv3 3 and conv4 1. Furthermore, We remove the three

fully-connected layer to make the structure adapt to the in-

puts of arbitrary resolution and adopt a 1 × 1 convolution

to map to the density map. Note that, we adopt the Rec-

tified linear unit (ReLU) activation function after the last

convolution to make sure that the estimated value is not

less than zero.The architecture of SPN is: 2 × CR(64, 3)-
M-2×CR(128, 3)-M-3×CR(256, 3)-M-3×CR(512, 3)-
SPM-3×CR(512, 3)-CR(256,3)-CR(1,1). N ×CR(m,n)
means N convolution layers with m filters whose size is

n × n followed by the ReLu layer. If N is 1, 1× will be

omitted. M is the max pooling layer.

3.2. Scale Pyramid Module

We design the Scale Pyramid Module to extract high-

level features of multiple scales. Adopting convolutions of

multiple sizes in parallel is a feasible method. However, the

number of parameters increases as larger kernels are used to

extract features at larger scales. Inspired by [14, 19], we re-

place the traditional convolutions of multiple sizes with the

dilated convolutions which can obtain different receptive

fields when adopting different rates (as shown in Fig. 3(b)).

Unlike the traditional convolution, the dilated convolution

doesn’t increase the number of parameters and the amount

of computation while expanding the receptive field.

The dilated convolution is first proposed by Yu et al. [41]

in segmentation task. It is a generalization of the traditional

convolution which introduces some ’holes’ to skip part of

the input. Let F : Z
2 → R be a discrete function. Let

Ωm = [−m,m]2 ∩ Z
2 and let k : Ωm → R be a discrete

filter of size (2m+ 1)2. The traditional convolution opera-

tion can be defined as:

(F ∗ k)(p) =
∑

s+t=p

F (s)k(t) . (1)

Let r be the dilation rate,the dilated convolution opera-

tion can be defined as:

(F ∗r k)(p) =
∑

s+rt=p

F (s)k(t) . (2)

It can be seen that a k× k size of traditional convolution

can be enlarged to k + (k − 1)(r − 1) without increasing

the number of parameters by introducing r-1 zeros between

consecutive filter values.

In our Scale Pyramid Module, we employ four paral-

lel dilated convolutions with dilated rate as 2, 4, 8, 12 re-

spectively (as shown in Fig. 3). Each dilated convolution

in SPM has the same number of channels as the input fea-

tures. Given input features maps, the four dilated convolu-

tions extract multi-scale features with the receptive field of

5×5, 9×9, 17×17, 25×25. Then the multi-scale features

are merged together and fed to the following convolution

layer for further processing. Moreover, we also merge the

input features in order to adapt to more scales. The features

can be merged by concatenation or addition. Experiments in

Introduction show that concatenation can get similar MAE

but better MSE than addition. In order to achieve good per-

formance both in MAE and MSE, we merge the features

by concatenation in the following experiments. The merged

features with different receptive fields capture the targets at

different scales, thus enhance the robustness of the model

against scale variations.

3.3. Ground Truth Density Maps

We generate the density maps following the previous

work [40, 18]. For each pedestrian head at pixel xi, we

represent it by a delta function δ(x − xi). To obtain a con-

tinuous density function, the ground truth density map F (x)
is computed by convolving the delta function with a Gaus-

sian Kernel Gσi
normalized to 1, which is defined as:

F (x) =

N∑
i=1

δ(x− xi) ∗Gσi
(x) . (3)

The value of σi is set by considering the crowd distribu-

tion of all the images in the dataset. For the UCF CC 50

dataset which suffered significant scale changes, we use the

geometry-adaptive kernels following the method of gener-

ating density maps in [40], the σi of head xi is determined

by the average distance di of k nearest neighbors, which is

defined as follow:

σi = βdi . (4)
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Figure 3. (a) The structure of our Scale Pyramid Module.The convolution layer’s parameters are denoted as ”conv-(kernel size)-(number

of filters)-(dilation rate)”. All convolution layers use padding to maintain the previous size and followed by the ReLu layer.
⊗

denotes

the fusion operation which can be achieved by concatenation or addition. (b) The dilated convolutions capturing targets at different scales

concatenate like a pyramid, thus we call the module as Scale Pyramid Module.

Dataset Generating method

ShanghaiTech Part A σi = 4
ShanghaiTech Part B σi = 15
UCF CC 50 Geometry-adaptive kernels

the UCSD σi = 3
TRANCSO σi = 10

Table 2. The ground truth generating methods for different

datasets.

Here we follow the configuration in [40] with β = 0.3
and k = 2. For the other datasets, we simply adopt σi with

the fixed value following [18]. Specific settings are shown

in the Table 2. Since we use three max pooling layers, we

generate the ground truth density map with the size 1/64 of

input size.

4. Experiments

4.1. Training Details

We conduct the experiments on three crowd counting

datasets [1, 10, 40] and a vehicle counting dataset [24]. For

each image in the training set, we augment it by randomly

cropping 9 patches with 1/4 size of the original image, and

then flipping each patch in the horizontal direction. We im-

plement our model based on the Caffe framework designed

by Jia et al. [39]. In all experiments, we set the batch size as

1 and employ stochastic gradient descent(SGD) as the opti-

mization with the momentum at 0.9. And we adopt a fixed

learning rate with different values on different datasets. To

cope with the overfitting, we employ L2 regularization with

the weight decay at 0.0005. The layers introduced from the

VGG-16 structure are fine-tuned from a pre-trained model.

The other layers adopt Gaussian initialization with 0.01

standard deviation. Following the work [40, 20, 23], we

also adopt the Euclidean loss to measure the distance be-

tween the ground truth and the estimated density map. The

loss function is given as follow:

L(Θ) =
1

2N

N∑
i=1

‖F (Xi; Θ)− Fi‖22 . (5)

Where Θ refers to the set of learnable parameters in the

SPN. Xi is the input image. F (Xi; Θ) denotes the esti-

mated density map generated by SPN for image Xi. Fi is

the corresponding ground truth density map of image Xi.

N is the number of training images. L is the loss between

the ground truth density map and the estimated density map.

4.2. Evaluation Metrics

Following the previous works [2, 7, 20, 40], we evalu-

ate the performance via the mean absolute error (MAE) and

mean square error (MSE) which are defined as:

MAE =
1

N

N∑
i=1

|zi − ẑi| . (6)

MSE =

√√√√ 1

N

N∑
i=1

|zi − ẑi|2 . (7)

where N is the number of test images, zi represents the

actual number of people in the ith image, and ẑi repre-

sents the estimated count in the ith image. The estimated

count is calculated by integrating the estimated density map.

Roughly speaking, MAE indicates the accuracy of the esti-

mation, and MSE indicates the robustness of the estima-

tion [40].
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Part A Part B

Method MAE MSE MAE MSE

Zhang et al. [2] 181.8 277.7 32.0 49.8

Marsden et al. [22] 126.5 173.5 23.8 33.1

MCNN[40] 110.2 173.2 26.4 41.3

Cascaded-MTL [30] 101.3 152.4 20.0 31.1

Switching-CNN [31] 90.4 135.0 21.6 33.4

DecideNet [11] - - 20.75 29.42

SaCNN [16] 86.8 139.2 16.2 25.8

ACSCP [28] 75.7 102.7 17.2 27.4

CP-CNN [31] 73.6 106.4 20.1 30.1

IG-CNN [6] 72.5 118.2 13.6 21.1

Liu et al. [37] 72.0 106.6 14.4 23.8

ic-CNN [34] 68.5 116.2 10.7 16.0

CSRNet [18] 68.2 115.0 10.6 16.0

Ours(SPN) 61.7 99.5 9.4 14.4

Table 3. Estimation errors on ShanghaiTech dataset.

4.3. ShanghaiTech Dataset

ShanghaiTech dataset [40] is a large-scale crowd count-

ing dataset which consists of 1198 annotated images with a

total of 330,165 people. This dataset consists of two Parts:

Part A includes 482 images in highly congested scenes with

counts ranging from 33 to 3139, while Part B includes 716

images in relatively sparse scenes with counts ranging from

9 to 578. Following [40], we use 300 images for training

and 182 images for testing in Part A, 400 images for train-

ing and 316 images for testing in Part B. We train the model

following the methods given in section 4.1 with the learning

rate at 10−7 on Part A and 10−6 on Part B.

The results of our method and previous state-of-art meth-

ods are shown in the Table 3. Results show that our

method achieves the lowest MAE and MSE both on Part A

and Part B. The previous state-of-art method called CSR-

Net [18] is a single column structure which deploys a con-

volutional neural network as the front-end for feature ex-

traction and a dilated CNN for the back-end to deliver larger

reception fields. Compared to CSRNet, our SPN model

can extract more multi-scale features, and we achieve 9.5%

lower MAE and 13.5% MSE on Part A, which demon-

strates the effectiveness of our SPN model and its robust-

ness in multi-scale scenes. On Part B, our model also

achieves 11.3% lower MAE and 10.0% lower MSE than

CSRNet, which indicates that our model can perform well

not only in extremely dense scenes but also in relative sparse

scenes.

4.4. Ablation Study on ShanghaiTech Part A

In order to analyze the effectiveness of our multi-scale

features extraction module, we conduct an ablation study

on the ShanghaiTech Part A [40] dataset.

Figure 4. Examples on ShanghaiTech Part A [40] dataset. The

first row shows images in testing set. The second row shows the

corresponding ground truth. The third row shows the generated

density map.

Method MAE MSE

SRN 68.8 114.7

VGG-16 Backbone 66.7 110.8

Ours(SPN) 61.7 99.5

Table 4. Ablation study on ShanghaiTech Part A.

Scale ratio 0.8 0.9 1.1 1.2 Mean Std

VGG-16 MAE 73.7 69.8 72.6 76.4 73.1 2.37
VGG-16 MSE 139.6 128.2 124.8 128.7 130.3 5.56
SPN MAE 70.1 66.0 66.5 68.8 67.8 1.67
SPN MSE 122.1 110.6 111.0 114.7 114.6 4.62

Table 5. Comparative experiments about sensitivity to scale

change. VGG-16 Backbone is omitted as VGG-16.

We remove our Scale Pyramid Module, that is VGG-

16 [29] model except for the fully connected layers and

two max pooling layers. Then we train it using the same

training method with the fixed learning rate at 10-7. We

denote this model as VGG-16 Backbone. As shown in Ta-

ble 4, VGG-16 Backbone gets the MAE of 66.7 and the

MSE of 110.8, while our SPN model obtains the MAE of

61.7 and the MSE of 99.5. Our model achieves 7.5% lower

MAE and 10.2% lower MSE, which demonstrates that the

Scale Pyramid Module can significantly decrease the error

of estimated crowd count in congested scenes with varied

scales. To further compare the two models’ sensitive to

scale changes, we test the VGG-16 Backbone and SPN us-

ing different scale ratio on the test set. Specifically, we

resize the original image during test with a fixed ratio as

0.8, 0.9, 1.1, 1.2 and utilize standard deviation of MAE and

MSE to measure the sensitivity to scale change. Results are

shown as Table 5. Our SPN model gets the smaller standard

deviation of MAE and MSE, which demonstrates that the

Scale Pyramid Module can decrease the sensitivity to scale

change.
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Configuration 2 2-4 2-4-8

MAE 66.9 64.6 62.3

MSE 107.6 108.6 99.5

Table 6. Experiments about different number of branches in Scale

Pyramid Module.

Method Parameters MAE MSE

MCNN 127.68k 110.2 185.9

MCNN-SPM 164.58k 102.6 147.6

MCNN-MSPM 227.49k 98.1 143.3

Table 7. Comparative experiments on ShanghaiTech Part A [40].

However, the increased number of parameters introduced

by our Scale Pyramid Module may also improve the perfor-

mance by increasing the capacity of the model. For the pur-

pose of studying the impact of increased parameters on re-

gression results, we replace all the dilated convolutions with

3× 3 convolutions which have the same number of param-

eters as the dilated convolutions. Then we train it with the

fixed learning rate at 10−6. We denote this model as Same

Rate Network(SRN). To our surprise, the performance of

SRN is worse than the VGG-16 Backbone, with the MAE

of 68.8 and the MSE of 114.7. The results demonstrate the

effectiveness of the structure with parallel dilated convolu-

tions at different rates.

In order to analyze the impact of the number of branches

in Scale Pyramid Module. We design three kind of Scale

Pyramid Modules which respectively consists of one branch

with dilation rate at 2, two branches with dilation rate at 2

and 4, three branches with dilation rate at 2,4,8. We train

them with the fixed learning rate at 10-7. The detailed eval-

uation results are shown in Table 6. The increase of branch

can improve the performance but will tend to saturate later.

We also apply the SPM module to multi-column struc-

ture and experiment on ShanghaiTech Part A dataset.We

apply the module to MCNN by two ways. For the first way,

we embed SPM to each column of MCNN, each SPM is

between the third convolution and the forth convolution of

the column. We denote this model as MCNN-MSPM. For

the second way, we embed SPM after the fusion operation

and add a 1 × 1 convolution with 30 channels before the

last convolution to decrease the channels smoothly. We de-

note this model as MCNN-SPM. Each dilated convolution

in SPM has the same number of channels as the input fea-

tures. The results in Table 7 shows that the two model both

perform better than MCNN, which demonstrates the effec-

tiveness of SPM.

4.5. The UCF CC 50 Dataset

The UCF CC 50 dataset [10] contains 50 images in ex-

tremely congested scenes. The counts range from 94 to

Method MAE MSE

Idrees et al. [9] 419.5 541.6

Zhang et al. [2] 467.0 498.5

MCNN [40] 377.6 509.1

Onoro et al. [23] Hydra-2s 333.7 425.2

Onoro et al. [23] Hydra-3s 465.7 371.8

Walach et al. [35] 364.4 341.4

Marsden et al. [22] 338.6 424.5

Cascaded-MTL [30] 322.8 397.9

Switching-CNN [7] 318.1 439.2

SaCNN [16] 314.9 424.8

CP-CNN [31] 295.8 320.9
ACSCP [28] 291.0 404.6

IG-CNN [6] 291.4 349.4

AMDCN [5] 290.82 -

Liu et al. [37](Keyword) 279.6 388.9

CSRNet [18] 266.1 397.5

ic-CNN [34] 260.9 365.5

Ours(SPN) 259.2 335.9

Table 8. Estimation errors on UCF CC 50 dataset.

4543 with an average of 1280 individuals per image. It is

an extremely challenging dataset due to the small dataset

size, large variance in crowd count, congested scenes and

large-scale change. Following the work of [10], we perform

5-fold cross validation on this dataset. Due to the small

dataset size, we fixed the first ten layers and only train the

other layers. In different training sets, we adopt different

learning rates.

Our method is evaluated and compared with previous

state-of-art methods. The results are summarized in Table 8,

it can be seen that our model achieves the lowest MAE and

MSE. Compared to CSRNet [18], we achieve 2.6% lower

MAE and 15.5% MSE, which indicates the robustness of

our method against the scale changes and the effectiveness

of our simple model.

4.6. The UCSD Dataset

The UCSD dataset [1] contains 2000 frames captured

from a stationary digital camcorder overlooking a pedes-

trian walkway at UCSD. They are in sparse scenes with

counts ranging from 11 to 46 per image, and totally con-

tains 49,885 pedestrians. The region of interest(ROI) is pro-

vided for the whole dataset so that the crowd counting is

only conducted in the ROI. Following the same setting with

[1], we use frames from 601 to 1400 as training data and

the remaining 1200 frames as test data. This split tests the

generalization ability and robustness of the crowd-counting

system. Before training, we first resize each frame from size

158×238 to 952×632 to tackle the reduction of resolution

due to the pooling operations. Then we set the intensities of

pixels out of ROI in the frame and the corresponding area
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Method MAE MSE

Zhang et al. [2] 1.60 3.31

CCNN [23] 1.51 -

Switching-CNN [7] 1.62 2.10

FCN-rLSTM [27] 1.54 3.02

CSRNet [18] 1.16 1.47

MCNN [40] 1.07 1.35

ACSCP [28] 1.04 1.35

Ours(SPN) 1.03 1.32

Table 9. Estimation errors on UCSD dataset.

Method GAME 0 GAME 1 GAME 2 GAME 3

Fiaschi et al. [15] 17.77 20.14 23.65 25.99
Lempitsky et al. [17] 13.76 16.72 20.72 24.36
Onoro et al. [23] Hydra-3s 10.99 13.75 16.69 19.32
AMDCN [5] 9.77 13.16 15.00 15.87
FCN-HA [27] 4.21 - - -
CSRNet [18] 3.56 5.49 8.57 15.04
Ours(SPN) 3.35 4.94 6.47 9.22

Table 10. GAME on TRANCOS dataset.

in the density map to zero. The training method is given in

section 4.1 and we set the learning rate at 10−6.

Table 9 shows the results of our model and previous

models. The results show that our model achieves state-

of-the-art performance, which indicates that our model can

estimate images not only with extremely dense crowds but

also with relative sparse people.

4.7. The TRANCOS Vehicle Counting Dataset

Besides the crowd counting datasets, we further con-

duct an experiment on TRANCOS vehicle counting dataset

which consists of 1244 traffic jam images with totally 46796

vehicles captured by real traffic surveillance cameras. This

dataset covers a variety of different scenes and viewpoints.

All the collected images contain traffic congestion with

changes in lighting conditions, different levels of overlap

and crowdedness, even within the same image. The region

of interest (ROI) to identify the road region is provided for

each image.

This dataset introduces a new metric called Grid Aver-

age Mean Absolute Error (GAME) to provide a more ac-

curate evaluation. This metric simultaneously considers

the object count and the location estimated for the objects.

The GAME(L) splits a given density map into 4L non-

overlapping regions and compute the MAE in each of these

sub-regions. Then these individual errors are summed to

obtain the final GAME for a particular image. The GAME

is formulated as follows:

GAME(L) =
1

N

N∑
n=1

(
4L∑
l=1

|eln − gtln|) . (8)

We train the model with learning rate at 10−5. Ta-

ble 10 shows the results of our model and previous models.

Figure 5. Examples in TRANCOS [24] dataset. The first row

shows images in testing set. The second row shows the corre-

sponding ground truth. The third row shows the generated density

map.

Our model achieves significant improvement, especially on

higher L of GAME metrics. Compared to the result of

Onoro et al. [23] method which employs an MCNN-like

architecture, our method achieves 69.5% lower GAME(0),

64.1% lower GAME(1), 61.2% lower GAME(2), 52.3%

lower GAME(3). Compared to CSRNet, our method

achieve 5.9% lower GAME(0), 10% lower GAME(1),

24.5% lower GAME(2), 38.7% lower GAME(3). It can

be seen that our method can be extended to other count-

ing tasks and also performs well, which indicates the great

robustness and generalization of our model. And the lower

GAME indicates that our model not only achieves a lower

error in object count but also has a more accurate distribu-

tion.

5. Conclusions

In this paper, we propose a novel architecture called

Scale Pyramid Network (SPN) for crowd counting. We

use a single column structure as the backbone and extract

high-level features of multiple scales by dilated convolu-

tions with different rates in parallel. Our method can eas-

ily adapt to multi-scale scenes with simpler structure and

less complexity of training. Extensive experiments are con-

ducted on the challenging crowd counting datasets and our

model gets the significantly better performance against the

state-of-art methods, which demonstrates the efficiency of

our method. What’s more, we extend our model to vehicle

counting task and also achieve the best performance.
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