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Human pose estimation is the task of localizing body key points from still images. As body key points
are inter-connected, it is desirable to model the structural relationships between body key points to fur-
ther improve the localization performance. In this paper, based on original graph convolutional networks,
we propose a novel model, termed Pose Graph Convolutional Network (PGCN), to exploit these impor-
tant relationships for pose estimation. Specifically, our model builds a directed graph between body key
points according to the natural compositional model of a human body. Each node (key point) is repre-
sented by a 3-D tensor consisting of multiple feature maps, initially generated by our backbone network,
to retain accurate spatial information. Furthermore, attention mechanism is presented to focus on crucial
edges (structured information) between key points. PGCN is then learned to map the graph into a set of
structure-aware key point representations which encode both structure of human body and appearance
information of specific key points. Additionally, we propose two modules for PGCN, i.e., the Local PGCN
(L-PGCN) module and Non-Local PGCN (NL-PGCN) module. The former utilizes spatial attention to cap-
ture the correlations between the local areas of adjacent key points to refine the location of key points.
While the latter captures long-range relationships via non-local operation to associate the challenging key
points. By equipping with these two modules, our PGCN can further improve localization performance.
Experiments both on single- and multi-person estimation benchmark datasets show that our method
consistently outperforms competing state-of-the-art methods.
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1. Introduction duced by the previous stage are fed to the next stage to learn the

image-dependent spatial distribution of key points. However, as

Human pose estimation is the task of localizing body key points
from still images. It serves as a fundamental technique for nu-
merous computer vision applications, such as action recognition
[1-4], person re-identification [5], human-computer interaction
and so on. It is also a challenging problem due to the high flex-
ibility of body limbs, occlusions, clutter backgrounds, overlapping
parts, nearby persons etc.

A Naive way to address the pose estimation problem is to treat
the body key points in isolation and predict a set of heat maps
which produce a per-pixel likelihood for key points locations us-
ing powerful convolutional neural networks (CNNs). Recently, Wei
et al. [6], Newell et al. [7] improves isolated detection based meth-
ods by multi-stage prediction mechanism, where predictions pro-
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shown in Fig. 1, these methods are prone to fail in the challeng-
ing cases. One promising way to further improve the localization
performance is to exploit the structural relationships between key
points. Some works based on probabilistic graph model [8,9] are
proposed to learn typical spatial relationships between key points.
However the feature correlation between key points is ignored.

In this paper, based on powerful graph convolutional networks,
we propose a Pose Graph Convolutional Network (PGCN) to cap-
ture the structural relationships between key points for pose es-
timation. Specifically, our PGCN represents the node (key points)
feature description by a 3-D tensor consisting of multiple 2-D fea-
ture maps to retain accurate localization information, and builds
a directed graph over these key points representations to explic-
itly model their correlations later. Each layer of PGCN first trans-
forms the input key points feature maps into a higher-level feature
space by convolutions, and then employs attention mechanisms to
focus on crucial edges (structured information) between key points
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Fig. 1. Pairs of pose predictions obtained by an 8-stack Hourglass network [7] (left) and our PGCN model (right). By capturing and exploiting structure of human body, our

model generates more accurate results.

which vary with input poses, type of key points and spatial loca-
tions. A multi-layer PGCN is stacked to generate a set of structure-
aware key point representations which encode both structure of
human body and appearance information of key points. These key
point representations are used to predict key point heat maps
which indicate the localization of each key point. Furthermore,
we develop two types of PGCN modules, namely the Local PGCN
(L-PGCN) module and Non-Local PGCN (NL-PGCN) module. Local
PGCN uses the spatial attention to pass the messages between the
local areas of adjacent key points. The detailed description gener-
ated by L-PGCN is beneficial for accurate localization of the body
key points. Non-Local PGCN employs non-local operations to model
the relationships in spite of the position of key points, which en-
ables the network to effectively handle challenging key points. Ul-
timate aggregation of the heat maps generated by both L-PGCN
and NL-PGCN achieves superior performance.
The main contributions of this paper are as follows:

- We propose a novel pose estimation model, which lever-
ages the power of graph convolutional networks to explicitly
model the structured relationships between key points.

+ We design two modules for our model, i.e., Local PGCN and
Non-Local PGCN which are proposed to refine the location of
key points locally, and capture global underlying contextual
information, respectively.

« We comprehensively evaluate our model on two single-
person pose estimation datasets and a multi-person es-
timation dataset, and our proposed method consistently
achieves superior performance over previous state-of-the-art
approaches.

The remainder of the paper is organized as follows. In Section 2,
we briefly review related literature of pose estimation and graph
convolutional networks. In Section 3, we elaborately introduce our
proposed PGCN model. Section 4 reports the pose estimation re-
sults of both single- and multi-person benchmark datasets with
also ablation studies. We conclude the paper in Section 5 finally.

2. Related work

Our proposed approach is related to previous work on graph
convolutional networks and human pose estimation, which is cat-
egorized as single- and multi-person pose estimation.

2.1. Single-person pose estimation

Single-person pose estimation has been an active research area.
Early approaches modeled human body as a set of unary term
and pairwise term. The unary term captured part appearance using
hand-craft feature such as histogram of oriented gradients (HOG)
while pairwise term captured spatial relationships among parts.
The majority of early work [10-12] focused on proposing an strong
pairwise term for highly articulated human body.

Recently, pose estimation using CNNs has shown superior per-
formance, which can be categorized into two categories: regression
based and detection based. Regression based methods [13] directly
regressed the 2D coordinates of key points from the input image.

Nevertheless, they are not performing as well as detection based
methods due to its lack of inherent spatial generalization.

Detection based methods predicted a heat map for each key
point and located the key point as the point with the max-
imum value in the map. Early works [8,9,14] focused on ex-
ploiting structural constraints between key point locations to
solve the multi-mode problem of heat map representation. Tomp-
son et al. [8] jointly trained a MRF-based spatial model and a
multi-resolution CNNs. The method of [14] proposed geometri-
cal transform kernels to capture the relationships between fea-
ture maps of key points. Yang et al. [9] combined CNNs with the
expressive deformable mixture of parts. CPM [6] used a sequen-
tial composition of convolutional architectures with large receptive
field to learning an implicit spatial models. Newell et al. [7] fol-
lowed CPM’s framework and designed stacked hourglass network
to rapidly expand the receptive field and consolidate features from
various scales to best capture the various spatial relationships as-
sociated with the body.

Since then occlusion and ambiguity became the main diffi-
culty of single-person pose estimation and various methods [15,16],
based on hourglass network, were proposed to further model and
exploit the relations between key points. Chen et al. [16] trained
the generator (pose estimation network) in an adversarial man-
ner against the discriminator. Tang et al. [15] introduced Deeply
Learned Compositional Model (DLCM) to learn the compositional-
ity of human bodies. However, more should be done to model and
exploit the priors of the human body structure in pose estimation.

2.2. Multi-person pose estimation

Multi-person pose estimation, which involves simultaneously
detecting people and localizing their key points, has been attract-
ing intensive interests in both academia and industry. Advances in
this topic are often categorized into bottom-up and top-down ap-
proaches.

2.2.1. Bottom-up fashion

Bottom-up approaches directly detect key points first and as-
sign them to person instances. State-of-art methods use CNN to
predict body parts and group assignments simultaneously, and
then employ an assignment algorithm to form individual skeletons.
DeepCut [17] used Integer Linear Program (ILP) to select and la-
bel body part candidates, and partitioned them into person clus-
ters. Cao et al. [18] presented Part Affinity Fields (PAFs) and used
Hungarian bipartite matching algorithm to efficiently associate
key points with individuals in the image. Li et al. [19] improves
PAFs [18] by parsing the poses with bounding box constraints in
a top-down manner. Kocabas et al. [20] used a multi-task model
to simultaneously produce score maps and person detection re-
sults, and then used a Pose Residual Network (PRN) to group the
candidate key points to different people. PoseAE [21] output an
associative embedding to identify key points from the same per-
son. Zhao et al. [22] improved PoseAE by predicting tag embedding
cluster-wise.
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2.2.2. Top-down fashion

Top-down approaches interpret the process of detecting key
points as sequentially performing person detection and single-
person pose estimation. Papandreou et al. [23] used ResNet with
dilated convolutions and predicted both key points heat map and
offset output, which were aggregated by Hough voting to pro-
duce highly localized activation maps. MASK RCNN [24]| firstly
predicted person box and appended a key point head on ROI
aligned feature maps to generate a one-hot mask for each key
points. RMPE [25] proposed a symmetric spatial transformer net-
work (SSTN) to handle inaccurate bounding box and introduced a
parametric NMS to delete redundant detection. CPN [26] proposed
by Chen et al. combined GlobalNet, which was a feature pyramid
network to handle easy key points, with RefineNet to explicitly
handling the hard key points by integrating all levels of feature
representations from the GlobalNet together with an online hard
key point mining loss. Xiao et al. [27] proposed a simple model
which simply added a few de-convolution layers over the last con-
volution stage in the ResNet and achieve state-of-art performance.

2.3. Graph convolutional network

There is an increasing interest in generalizing convolutions to
the graph domain. Advances in this direction are often categorized
as spectral approaches and non-spectral approaches. Spectral ap-
proaches [28] work with a spectral representation of the graphs.
The convolution operation was defined in the Fourier domain by
computing the eigendecomposition of the graph Laplacian. Non-
spectral approaches defined convolutions directly on the graph, op-
erating on spatially close neighbors. Hamilton et al. [29] proposed
the GraphSAGE which generated embeddings by sampling and ag-
gregating features from local neighborhood nodes. Recently, graph
convolutional networks were explored in a wide range of area such
as image classification [30], text classification [31], traffic forecast-
ing [32] and emotion distribution learning [33]. Specifically, Chen
et al. [30] built a directed graph where each node corresponds to
an object labels and took the word embeddings of nodes as in-
put for predicting the classifier of different categories. Yao et al.
[31] regarded the documents and words as nodes and used the
Text GCN to learning embeddings of words and documents. Zhang
et al. [32] represented roads and intersctions as nodes and took the
summation of the taxi flow in previous six internals of nodes as in-
put to predict the taxi flow in next internals. He and Jin [33] built
a directed graph between different emotions to capture the co-
appearance correlation.

3. Proposed method

An overview of the proposed framework is illustrated in Fig. 2.
In this section, we recap the original graph convolutional networks
and then elaborate our PGCN for structure-aware pose estimation.
Furthermore we describe the two major components in our model,
i.e., Local PGCN module and Non-Local PGCN module. The former
focuses on the local areas of adjacent nodes feature maps to refine
the location of key points, while later captures the feature correla-
tion in spite of the position of key points which enables the net-
work to efficiently associate challenging key points.

3.1. Graph convolution network recap

Graph Convolutional Networks (GCNs) were introduced
in [34] to perform semi-supervised classification on graph-
structured data. The essential idea is to update the node represen-
tations by propagating information between nodes.

Different from standard convolutional operations, the goal of
GCNs is to learn a function f( - ) on a graph ¢ which takes an adja-

cency matrix A € R™" and a feature description z), € R? for every
node u at Ith layer as inputs. Let z' denote the n x d feature ma-
trix obtained by stacking together all the node feature description
of the graph G. n is the number of nodes and d is the dimension
of features. Then it produces a node-level output 2! ¢ R?' for ev-
ery node u. Every neural network layer can then be written as a

nonlinear function:
zl+1 — fl(Zl,A). (])

Specifically, [34] introduced a sophisticated form of a layer-wise
propagation rule which update the set of features 2/, by two steps.
Firstly a linear transformation 77(-), parametrized by a weight
matrix ©' e RYxd_ s applied to transform current feature into a
higher-level features bf, eRY and then the normalized adjacency
matrix A is used to aggregate information from its neighborhood
Ny. Formally, node features is updated as:

b =7(z:;0")=07, 2)
2 =o| Y Aub, ). 3)
veg

where o( - ) denotes a nonlinear function such as ReLU [35]. Thus,
we can learn and model the complex inter-relationships of the
nodes by stacking multiple graph convolution layers.

3.2. Local PGCN

In this section, we design a new GCN namely PGCN for pose
estimation. Intuitively, each node in G represents a key point and
each edge connects two adjacent key points. Fig. 5 illustrates the
natural compositional model of a human body.

Since human pose estimation requires accurate localization of
body key points, the input key point feature description of our
PGCN is a set of feature maps Z0 e RF*W*C which are generated
by backbone network, to retain accurate spatial information. H, W
and C denote the height, width and number of channels of Z9 re-
spectively. For the output, we predict a new set of structure-aware
key point representations Z5 € R"*Wx*C which encode both appear-
ance information of specific key points and structure of human
body. L is the number of PGCN layer. L = 2 is used by default un-
less otherwise noted.

Consequently, function 77 applied to each node is naturally im-
plemented by a convolutional operation. Note that transformation
function on each node is not shared. The reason is that different
convolutions for different nodes allow the PGCN to capture more
accurate structural information from various human pose when
a large amount of training data with the same graph structure
are available. Formally, transformation 7, for each node u can be
rewritten:

B, = 7;(2: ©,) = ©} <2 (4)

where “*” denotes convolution, B}, e RF*WxC' is the output of 7!
and GL is the convolution weight of node u. In all the experiments,
we set C=C" = 16.

After transformation, directly aggregating information with the
normalized adjacency matrix A will cause several problem [50].
In the one hand, relationships between key points vary as the in-
put pose changes. For example, relationship between a visible key
point and a occluded key point is different from the one between
two visible key points. In the other hand, different key points
need different information from its neighborhoods. Some easy key
points like eyes should be influenced less by its neighborhood than
the hard one such as wrists and ankles. Furthermore, relationships
of nodes features at different positions are also varied.
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Pose Graph Convolution Network(PGCN)
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Fig. 2. Overall framework of our proposed model for human pose estimation. The input images are fed to conventional CNNs to obtain the key points representations
each of which is a feature map ZJ € R**WxC_ H, W and C are the height, width and number of channels of Z9 respectively. Then we build a directed graph over these key
point representations to explicitly model their relationships. Based on the graph, two parallel multi-layer Pose Graph Convolutional Network (PGCN) modules are learned to
propagate information between different key points and further exploit the key point dependency. Specifically, Local PGCN (L-PGCN) module captures the feature correlation
between key points by focusing on local receptive field to refine the location of key points, while Non-Local PGCN (NL-PGCN) module exploits the long-range relationships
via non-local operation to associate challenging key points. In consequence, both PGCN modules generate refined key point representations which encode both structure of
human body and appearance information of key points. Two sets of heat maps are generated via applying 3 x 3 convolutions on the feature maps and then merged together

to get our final predictions.

For above considerations, we design a attention based aggre-
gation function to focus on crucial edges (structured information)
between nodes (key points). Specifically, we perform a convolu-

tion with ReLU nonlinearity to generate an attention map Sy, €
RHXWX]:

S|, = o (att! , x concate(B}, B.)), (5)

where attl, denotes the convolution filters and Ny denotes the
adjacent key point set of key point u. S{,,,, indicates the importance
of node v to node u at every positions. Here, attf“, is specific for
each (u, v). The layer-wise propagation rule is illustrated Fig. 3(a).

Once obtained, attention map is used to generate a linear com-
bination of the feature map corresponding to them, to serve as the
output for each node:

Z/'=Y"s,,0B,. (6)

veNy

where “©®” represents the channel-wise Hadamard matrix prod-
uct operation. Note that N, contains node u itself. Specifically, K
independent attention mechanisms execute the transformation of
Egs. (5) and (6), and then their features are concatenated, result-

ing in the following output feature representation:

Zi" = concate| Y SiIBi. ... > SLEBLK) . (7)
veNy veNy
Stk = o (atty, * concate(BL¥, BL¥)) (8)

, . c .
where we cut the B, into K slices and B} e R"*W*k is the kth

slice of Bl. SL'ﬁ, is the attention map computed by kth attention
mechanism. The aggregation process based on multi-head mecha-
nism is illustrated in Fig. 3(b). In all our experiments, we set K = 2.

By focusing on the local receptive field, PGCN mentioned above
focuses on the relationships between the local areas from the same
position of different feature maps. Therefore, we named it as Local
PGCN (L-PGCN).

3.3. Non-local PGCN

In this section, we introduce another type of PGCN which fo-
cuses on capturing long-range relationships between key points by
using non-local operation [36] between feature maps of nodes. For
node u and its neighborhood v, the node features Z!, and Z!, are



Y. Bin, Z.-M. Chen and X.-S. Wei et al./Pattern Recognition 106 (2020) 107410
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(b)

Fig. 3. (a) Layer-wise propagation rule of Local PGCN with single-head attention. Node u is updated by attending over itself and its neighbor v. (b) lllustration of multi-head
attention (with K = 2 heads) by node u on its adjacent node v. Different colors denote independent attention computations. The aggregated features from each head are
concatenated to obtain Z!. “®” denotes the channel-wise Hadamard matrix product. “@” is element-wise addition.
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Qb_’[l Q 1+

u
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Fig. 4. Layer-wise propagation rule of Non-Local PGCN. “®” denotes matrix multi-
plication. “@” is element-wise addition.

first transformed into two feature space 8)(-), ¢.(-) respectively to
calculate the attention g, , € RHWxHW:

_ 1 I
:Bu,v - Weu (Zlu)qbv(zi/)-r ’ (9)

where each element of §, , denoted as B, ,(j, i) indicates the ex-
tent to which the model attends to the iy, location of node v when

generates the jth feature of node u. Then the output of node u is
7+ ¢ RHWC,

7' =Z + o Y B (@) ). (10)

veN,

where 6}(-), ¢L(-), ¥I(-) and @.(-) are 3 x 3 convolutions. Here
multi-head attention is not used. Due to non-local operation, we
name this PGCN as Non-Local PGCN (NL-PGCN). The layer-wise
propagation rule is illustrated in Fig. 4.

3.4. Learning

As shown in Fig. 2, The overall model employs a Local PGCN
module and a Non-Local PGCN module in parallel to capture lo-
cal and long-range relationships between key points. 3 x 3 con-
volutions are applied on output feature maps of every nodes (key
points) to generate the heat maps. We denote the heat maps gen-
erated by L-PGCN and NL-PGCN as P and P! respectively. Each of
them undergoes a 5 x 5 convolutions and are then added together.

i

(a) (b)

Fig. 5. Natural compositional model of a human body originally presented by (a)
MPII dataset and (b) COCO dataset.

The final heat map P, is generated by applying another 3 x 3 con-
volutions on the added feature.

Pu = fconv3><3 (fconquS(PI[l) + fconvaS(PlL\l]L)) . (11)

The ¢, loss is enforced to penalize the difference between pre-
dicted heat maps and ground-truth heat maps:

Im =D 11PL = Gull2 + | IP)* = Gul|2 + Py — Gl (12)

ueg

where G, represents the ground-truth heat map for key point u.
In standard dataset, the ground-truth poses are provided as
the key points locations. Denote the ground-truth locations of key
point u by (xy, yu). Then the ground-truth heat map G, of key
point u is generated by using a 2D Gaussian centered at (xy, yu).

3.5. Backbone

In order to prove the generality of our PGCN model, we
place it on top of two different backbone networks. The one is
ResNet [37] based network, the other is widely used stacked hour-
glass network [7].

3.5.1. ResNet

ResNet [37] is the most common backbone network for image
feature extraction. Here, we describe our backbone network struc-
ture based on the ResNet [37]. We denote the feature activations
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Fig. 6. Statistics of (a) accuracy, (b) number of parameters, and (c) computational complexity in terms of GFLOPs on three models, i.e., Hourglass, PRM, our model.

J

(a)

(b) (¢) (d)

Fig. 7. Feature maps of (a) right wrist, (b) right elbow before spatial attention produced by L-PGCN. Feature maps of right elbow are activated at the location of right wrist,
thus information could be propagated from right elbow to right wrist. (c) Attention map from right wrist to right elbow. (d) Feature maps of right elbow after weighted by
the attention map (c). Crucial information from right elbow to right wrist is attended.
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Fig. 8. Comparisons with different depths of PGCN in our mode on (a) MPII validation set and (b) COCO val2017 dataset.

output by each stage’s last residual block as {C2, C3, C4, C5} re-
spectively. These features are either too coarse to localization or
too low-level to recognition. Thus a U-shape structure is integrated
to produce a single high-level feature maps of a fine resolution
on which the predictions are to be made. Although FPN further
improves the U-shape structure with deeply supervised informa-
tion on detection task, we found it is useless or even harmful for
pose estimation. Therefore, we apply a U-shape structure for pose
estimation. Specifically, bilinear upsampling followed by a 1 x 1
convolution is used to upsample spatially coarse but semantically
strong feature maps from higher pyramid levels in top-down path-
way. Then features from bottom-up and top-down pathways are
merged via lateral connections which are 1 x 1 convolutions. Once
obtained, the final feature maps are used to generate initial feature
description Z° of each key point which is then fed into our L-PGCN
and NL-PGCN modules.

3.5.2. Hourglass

The 8-stack Hourglass network is a widely used network frame-
work in single-human pose estimation. In each hourglass stack,
features are pooled down to a very low resolution, then they are
upsampled and combined with high-resolution features. This struc-
ture is repeated for several times to gradually capture more global

representations. Equipped with our proposed PGCN, state-of-the-
art results is achieved on the pose estimation benchmark datasets.

4. Experiments

In this section, we first describe empirical settings with imple-
mentation details. Then, we report the comparison results on both
single- and multi-person benchmark datasets. In the following, ab-
lation studies and visualization analyses are presented.

4.1. Empirical settings

Datasets, evaluation metrics and implementation details are
presented in this section.

4.1.1. Datasets and evaluation protocols

For single-person pose estimation, we conduct experiments on
the MPII [38] and extended LSP [39] datasets. The extended LSP
dataset [39] consists of 11k training images and 1k testing images
of mostly sports people. The images have been scaled such that the
most prominent person is roughly 150 pixels in length. Each image
has been annotated with 14 key point locations. Left and right key
points are consistently labeled from a person-centric viewpoint.
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ResNet-50+NL-PGCN

(b)

Ground-Truth

Fig. 9. (a) Heat map on MPII valid set produced by the ResNet-50 baseline, ResNet-50+L-PGCN and Ground-Truth. (b) Heat map on MPII valid set produced by the ResNet-50

baseline, ResNet-50+NL-PGCN and Ground-Truth.

The MPIl Human Pose dataset [38] is a benchmark for evaluation
of articulated human pose estimation. The dataset includes around
25k images containing over 40k people with annotated body key
points (28k training and 11k testing). Following [7], 3k samples are
taken as a validation set to tune the hyper-parameters. For these
two datasets, standard Percentage of Correct Key points (PCK) met-
ric is used for evaluation. It reports the percentage of key points
that fall into a normalized distance of the ground-truth. For LSP,
distance is normalized by torso size, and for MPII, distance is nor-
malized by head size. MPII evaluation metric is referred to PCKh.

For multi-person pose estimation, the COCO Key point Chal-
lenge [40] requires localization of multi-person key points in chal-
lenging uncontrolled conditions. The key point task involves simul-
taneously detecting people and localizing their key points (per-
son locations are not given at test time). The COCO train, valida-
tion, and test sets contain more than 200k images and 250k per-
son instances labeled with key points. 150k instances of them are
publicly available for training and validation. Our models are only
trained on COCO train2017 dataset (includes 57k images and 150k
person instances) with no extra data involved and validated on the
val2017 set (includes 5000 images). The COCO evaluation defines
the object key point similarity (OKS) which plays the same role
as the IoU. It is calculated from the Euclidean distance between
predicted points and ground-truth points normalized by scale of
the person and variation of human annotations. Then the mean av-
erage precision (AP) over 10 OKS thresholds as main competition
metric.

4.1.2. Implementation details

Our network is implemented by using the open-source library
PyTorch. For experimental details, we employ Adam [41] with a
learning rate 0.001 as the network optimizer. We drop the learn-
ing rate by a factor of 10 at the 90th and 110th epochs. Training
ends at 140 epochs. The ResNet backbone network is initialized
with weight of public-released ImageNet [42] pre-trained model
and the rest of our model is randomly initialized.

For the Non-Local PGCN, we do not obtain the attention map
B, € RIWXHW directly, which significantly reduces the computa-
tional complexity. Layer-wise propagation rule of Non-Local PGCN
can be written as:

1 T
i O Z0e () yJ(ZL)) , (13)

veN,

z =zz+¢z(

where 61(Z), ¢1(Z.), y}(Z.) e RFW*C are the transformed feature
maps. We implement Eq. (13) by fist calculating Kernel, ¢ R®<C:

1
Kernel, = Wqﬁ’v(zf,fyj ). (14)
Then, Eq. (13) can be rewritten as:
2 =7l 4 ¢! (9}, z) Y Kemel,,) . (15)
veNy

Therefore, each layer Non-Local PGCN contains 2] matrix multi-
plication and each matrix multiplication requires HWC? FLOPs. |
is the number of key points. For the MPII dataset, we have H =
64,W =64,C =16 and J = 16. The matrix multiplication in each
layer Non-local PGCN requires 2JHWC? = 0.031 GFLOPs, which is
a slight computational burden.

MPII and LSP: For MPII, the scale and position are provided. We
first utilize these value to crop the image around the target person
and then resize the cropped image to 256 x 256. Data augmenta-
tion includes random flip, random rotation (—30, 30) and random
scale (0.75, 1.25). Following [43], we estimate the scale and posi-
tion according to key point positions or image sizes for LSP dataset.
For the LSP test set, we perform similar resizing and cropping (or
padding), but simply use the image center as the body position,
and estimate the body scale by the image size. The compositional
model of the human body originally presented by MPII and LSP is
shown in Fig. 5(a).

Testing is conducted on six-scale image pyramids with flipping
where scale ranges from 0.8 to 1.3 with step of 0.1. For each scale,
we run both original input and a flipped version of it and average
the heat maps together. Then we warp the heat maps of each scale
to original image size and average them to get final heat maps. A
quarter of a pixel offset in the direction from the highest response
to its next highest neighbor is used to obtain the final location of
the key points.

MSCOCO: Following [26], Xiao et al. [27], each ground-truth hu-
man box is extended to fixed aspect ratio, e.g., height : width = 4
: 3 and enlarged to contain more context by a rescale factor 1.25.
Then the resulting box is cropped from image without distorting
image aspect ratio and resized to a fixed resolution. The default
resolution is 256 : 192. After cropping from images, we apply ran-
dom flip, random rotation (-40, 40) and random scale (0.7, 1.3). The
natural compositional model of a human body originally presented
by COCO is shown in Fig. 5(b).
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Fig. 10. Prediction samples on the MPII test set produced by different networks, i.e., ResNet-50, ResNet-50-Ours, Hourglass, Hourglass-Ours.

We use the human detection results provided by Chen et al.
[26], which achieves detection AP 55.3 for human category in
COCO val2017. We also predict the pose of the corresponding
flipped image and average the heat maps to get the final predic-
tion. To improve performance at high precision thresholds the pre-
diction is offset by a quarter of a pixel in the direction of its next
highest neighbor before transforming back to the original coordi-
nate space of the image.

4.2. Main results

We report the empirical results and comparisons on both
single-person and multi-person pose estimation benchmark
datasets.

4.2.1. Single-person pose estimation

Results on the MPII dataset: Table 1 summarizes the MPII evalua-
tion results. Ours-Hourglass and Ours-ResNet-50 denote a 8-staked
Hourglass backbone and a ResNet-50 based backbone network
combined with our L&QNL-PGCN model. They are trained on all the
MPII training set. We can observe that Ours-Hourglass achieves
92.4% PCKh score at threshold of 0.5, which is the new state-of-
the-art result. In particular, it achieves 1.9% and 2.5% improvements
on wrist and elbow which are considered as the most challeng-
ing key points to be detected. It is noteworthy that Ours-ResNet-
50 performs better than many deeper network which demonstrates
effectiveness of our L&NL-PGCN model.

For model complexity, as shown in Fig. 6, PRM [43] model in-
creases the number of parameters by 1.6% from 23.7 M to 241 M
given an 8-stacked Hourglass network. while ours only introduces
0.8% extra parameters. In the other hand, GFLOPS of our model is
also 7.1% less than PRM for a 256 x 256 input RGB image. Our
model is both effective and efficient.

Results on the LSP dataset: Table 2 presents the PCK scores at
the threshold of 0.2. We follow previous methods [6,43] to train
our model by adding the MPII training set to the extended LSP
training set with person-centric annotations. Our hourglass based
model outperforms state-of-art methods by a large margin.

4.2.2. Multi-person pose estimation

Results on COCO val2017: Table 3 compares our model with
Hourglass [7], CPN [26] and SIM [27] on COCO val2017 dataset. All
the methods use standard top-down paradigm which sequentially
performs human box detection and single-person pose estimation.
Our model, Hourglass [7] and CPN [26] use the same human de-
tector with the person detection AP 55.3% which is slightly lower
than SIM’s 56.4%.

Compared with Hourglass [7,26], our model achieves an im-
provement of 4.2% in AP. Both methods use an input size
256 x 192. CPN [26], SIM [27] and our model use the same
backbone of ResNet-50. Our model outperforms CPN [26] and
SIM [27] by 1.7% and 0.7% for input size 256 x 192 respec-
tively. When input size is 384 x 288, our model is better than
CPN [26] and SIM [27] by 1.3% and 0.7% AP.
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Table 1

Comparisons of PCKh@0.5 scores on the MPII testing set.
Method Head  Sho. Elb. Wri. Hip Knee Ank. Mean
Tompson et al. [8] 95.8 90.3 805 743 776 69.7 628 796
Tompson et al. [44] 96.1 919 839 778 809 723 64.8  82.0
Pishchulin et al.[17] 94.1 90.2 834 773 826 757 686 824
Lifshitz et al. [45] 97.8 933 857 804 853 76.6 702 850
Rafi et al. [46] 97.2 939 864 813 868 80.6 734 863
Insafutdinov et al. [47] 96.8 952 893 844 884 834 780 885
Wei et al. [6] 97.8 95.0 887 840 834 828 794 885
Bulat and Tzimiropoulos [48] 97.9 95.1 89.9 85.3 89.4 85.7 81.7 89.7
Chu et al. [49] 98.5 963 919 88.1 90.6 88.0 85.0 915
Chen et al. [16] 98.1 96.5 925 885 902 89.6 86.0 919
Yang et al. [43] 98.5 96.7 925 887 91.1 88.6 86.0 92.0
Newell et al. [7] 98.2 963 912 87.1 90.1 87.4 83.6  90.9
ResNet-50-Ours 97.9 96.1 915 868 907 876 843 911
Hourglass-Ours 98.0 969 927 890 918 894 86.1 924

Table 2

Comparisons of PCK@0.2 scores on the LSP testing set.
Method Head  Sho. Elb. Wri. Hip Knee  Ank. Mean
Lifshitz et al. [45] 96.8 89.0 827 791 90.9 86.0 825 86.7
Pishchulin et al. [17] 97.0 910 838 781 91.0 86.7 820 871
Insafutdinov et al. [47] 97.4 92.7 875 844 915 899 87.2  90.1
Wei et al. [6] 97.8 925 870 839 915 908 89.9 905
Bulat and Tzimiropoulos [48]  97.2 92.1 88.1 852 922 914 88.7  90.7
Chu et al. [49] 98.1 93.7 893 869 934 940 925 926
Chen et al. [16] 98.5 940 898 875 939 941 93.0 93.1
Yang et al. [43] 98.3 945 922 889 944 950 93.7 939
Tang et al. [15] 98.3 959 935 907 950 96.6 95.7  95.1
ResNet-50-Ours 98.6 95.6 948 929 946 96.0 94.7 954
Hourglass-Ours 98.6 96.2 953 951 952 963 96.0 96.1

Table 3

Comparison with Hourglass [7], CPN [26] and SIM [27] on COCO val2017 dataset. Their results are

cited from [26,27].

Method Backbone Input size APHumanBox Params  GFLOPs AP

8stage Hourglass [7] - 256 x 192 55.3 25.1M 143 66.9
CPN [26] ResNet-50 256 x 192 55.3 27.0M 6.20 69.4
CPN [26] ResNet-50 384 x 288  55.3 27.0M 13.9 71.6
SIM [27] ResNet-50 256 x 192  56.4 34.0M 8.9 70.4
SIM [27] ResNet-50 384 x 288  56.4 34.0M 20.0 72.2
ResNet-50-Ours ResNet-50 256 x 192 55.3 24.8M 4.6 69.5
Ours ResNet-50 256 x 192  55.3 25.2M 5.7 71.1
Ours ResNet-50 384 x 288  55.3 25.2M 12.9 72.9

4.3. Ablation studies

In this section, we conduct the ablation studies both on single-
and multi-person pose estimation task, using the validation set of
MPII and COCO datasets respectively. A ResNet-50 based U-shape
network is used as the baseline model which achieves a PCKh
score at 87.8% on MPII validation set and an AP of 69.5% on COCO
val2017 dataset. The overall results are shown in Table 5. Based on
the baseline network, we analyze each component of our model,
i.e., the local PGCN (L-PGCN) module and the Non-Local PGCN (NL-
PGCN) module, by comparing the PCKh score at threshold 0.5 on
MPII validation set and AP on COCO val2017 dataset.

4.3.1. Local PGCN

We first evaluate the effect of Local PGCN (L-PGCN) module. By
adding our L-PGCN module at the end of the baseline model, we
get an PCKh score at 88.6%, which is about 0.8% higher than the
baseline model. The AP of the baseline model is improved from
69.5% to 70.6%. The results validate the effectiveness of our L-PGCN
module.

4.3.2. Non-local PGCN

We are also interested in how Non-Local PGCN (NL-PGCN) mod-
ule perform solely. To this end, we conduct an experiment by
adding a NL-PGCN module at the end of the baseline model. The
PCKh score and AP here is 88.6% and 70.6%, which is 0.8% improve-
ment on PCKh score and 1.2% improvement on AP brought by NL-
PGCN.

4.3.3. L&NL-PGCN

While L-PGCN module pays attention to correlation in local
area, the NL-PGCN module focus on long-range relations. Then our
final PGCN model (L&NL-PGCN) employs a NL-PGCN module and a
L-PGCN module in parallel on top of the baseline model. This im-
proves PCKh score from 88.7% to 88.9% and AP from 70.7% to 71.1%,
which indicates that our L-PGCN module and NL-PGCN module are
complementary with each other.

We also conduct an experiment to explore relationship between
the number of PGCN layer and the system performance. As shown
in Fig. 8, when the number of graph convolution layers increases,
the pose estimation performance increases and saturates quickly
at L = 3 (both L-PGCN and NL-PGCN). On MPII dataset, PCKh score
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Fig. 11. Examples of estimated poses on the MPII test set and the LSP test set.

increases 0.6% and 0.3% when a Local pose graph convolution layer
is added incrementally upon our ResNet-50 baseline. Then perfor-
mance begins to drop at L = 3. NL-PGCN has almost the same be-
havior. The similar trends are found on COCO dataset. The tiny dif-
ference is caused by the slightly different graph of human body
structure presented by MPII and COCO datasets. It is indicated that
relationships between directly adjacent key points are of most im-
portance. The performance drop with increasing number of layers
indicates that it is hard to capture and exploit relations between
key points in distance.

The motivation of our L-PGCN module is to capture the struc-
tural relationships between body key points by propagating infor-
mation between the local areas of adjacent key points. In order to
clearly explain the mechanism of L-PGCN and validate its effective-
ness, we visualize the feature maps and attention maps of L-PGCN
produced by ResNet-50 + L&NL-PGCN model.

Each layer of L-PGCN first transforms the input key points fea-
ture maps into a higher-level feature space by convolutions, which
contains both information of the key point itself and its adjacent
key points. As shown in the Fig. 7(a,b), feature maps of right el-
bow are activated at the location of both right wrist and right el-
bow. As a result, right wrist could take information from feature
maps of right elbow.

Then, L-PGCN generates a spatial attention map to focus on cru-
cial information between key points. As shown in the Fig. 7(c),
the attention map from right wrist to right elbow is activated
around the location of right wrist. Furthermore, weighted by
the attention map, feature maps of right elbow are converted
to highly localized feature maps of right wrist. These qualitative
results demonstrate that L-PGCN learns to propagate structural

Table 4
Ablation study of the adjacent matrix on MPII validation set.

Method Head  Sho. Elb. Wri. Hip Knee Ank. Mean

L-PGCN-I  96.1 950 884 830 879 839 78.7  88.2
L-PGCN 96.3 952 891 839 886 845 79.9 887

information between adjacent key point for accurate key point
localization.

We also conduct experiments to investigate the importance of
structural relationships between key points on MPII validation set.
The L-PGCN model is used as the baseline, which achieves a PCKh
score at 88.7% on MPII validation set. By remove the feature aggre-
gation process between key points, L-PGCN model is degraded to
grouped convolution with spatial attention, which has almost the
same capacity as L-PGCN. We call this degraded model as L-PGCN-
[, for its adjacent matrix is an identity matrix. As shown in Table 4,
L-PGCN-I gets an PCKh score at 88.2%, which is about 0.5% lower
than the baseline L-PGCN. The results validate that our L-PGCN im-
proves the localization performance by modeling structural rela-
tionships between key points.

4.4. Qualitative results

Fig. 9(a) visualizes some heat maps produced by the ResNet-50
baseline model, ResNet-50 + L-PGCN model and ground-truth. We
can observe that our L-PGCN predicts more refined heat maps than
the baseline model. Especially when symmetric key points are very
close or even overlap, L-PGCN refines the heat map by reducing the
ambiguities via utilizing the correlations in the local area.
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Table 5

Ablation study on MPII and COCO validation set.
Model L-PGCN  NL-PGCN  MPII coco

Wri.  Ank.  Mean AP AR

ResNet-50 826 786 878 69.5 753
ResNet-50 + L-PGCN v 836 799 887 706 763
ResNet-50 + NL-PGCN v 833 805 886 70.7  76.5
ResNet-50 + L&NL-PGCN v v 83.6 808 889 711  77.0

Fig. 12. Examples of estimated poses on the COCO test set.

Fig. 9(b) displays some heat maps produced by the ResNet-50
baseline model, ResNet-50 + NL-PGCN model and ground truth. It
is clear to see that our NL-PGCN can associate occluded key points
and distinguish the symmetric key points which are widely sepa-
rated in space.

Fig. 10 displays some pose estimation results obtained by the
baseline model and our approach. We observe the baseline model
may has difficulty in distinguishing objects with similar appear-
ance with limbs (e.g., the exercise bike in {col.3, row.4}), and rea-
soning occluded key points (e.g., the occluded right wrist in {col.3,
row.2}). Our PGCN model would be great help for resolving the
ambiguities and occlusions by utilizing the feature response of the

neighborhood key points. Fig. 11 demonstrates the poses predicted
by our model on the MPII test set and the LSP test set. Our model
is robust to extremely difficult cases, e.g., rare poses and cluttered
background. More results on COCO test-dev dataset, generated us-
ing our model, are shown in Fig. 12.

5. Conclusion

Capturing structured relations between human body key points
is the crucial issue for pose estimation. In this paper, we pro-
posed a novel pose estimation model, which leveraged the power
of graph convolutional networks to explicitly model the structured
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relationships between key points. We built a directed graph be-
tween body key points according to body structure where each
node (key point) was represented by a tensor which was initially
generated by backbone models and attention mechanism was fur-
ther used to focus on crucial edges (structural information). Then,
PGCN mapped this key points graph to a set of structure-aware
key points representations. Furthermore, we designed two modules
for the model, i.e., Local PGCN and Non-Local PGCN which were
proposed to refine the location of key points locally, and capture
global underlying contextual information, respectively. Equipped
with these two modules, both quantitative results and qualitative
visualization validated the effectiveness of our proposed model.
Beyond that, extending the model to simultaneously incorporate
structural information between multiple persons is an interesting
future work.
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