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a b s t r a c t 

Human pose estimation is the task of localizing body key points from still images. As body key points 

are inter-connected, it is desirable to model the structural relationships between body key points to fur- 

ther improve the localization performance. In this paper, based on original graph convolutional networks, 

we propose a novel model, termed Pose Graph Convolutional Network (PGCN), to exploit these impor- 

tant relationships for pose estimation. Specifically, our model builds a directed graph between body key 

points according to the natural compositional model of a human body. Each node (key point) is repre- 

sented by a 3-D tensor consisting of multiple feature maps, initially generated by our backbone network, 

to retain accurate spatial information. Furthermore, attention mechanism is presented to focus on crucial 

edges (structured information) between key points. PGCN is then learned to map the graph into a set of 

structure-aware key point representations which encode both structure of human body and appearance 

information of specific key points. Additionally, we propose two modules for PGCN, i.e., the Local PGCN 

(L-PGCN) module and Non-Local PGCN (NL-PGCN) module. The former utilizes spatial attention to cap- 

ture the correlations between the local areas of adjacent key points to refine the location of key points. 

While the latter captures long-range relationships via non-local operation to associate the challenging key 

points. By equipping with these two modules, our PGCN can further improve localization performance. 

Experiments both on single- and multi-person estimation benchmark datasets show that our method 

consistently outperforms competing state-of-the-art methods. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Human pose estimation is the task of localizing body key points

rom still images. It serves as a fundamental technique for nu-

erous computer vision applications, such as action recognition

1–4] , person re-identification [5] , human-computer interaction

nd so on. It is also a challenging problem due to the high flex-

bility of body limbs, occlusions, clutter backgrounds, overlapping

arts, nearby persons etc. 

A Naïve way to address the pose estimation problem is to treat

he body key points in isolation and predict a set of heat maps

hich produce a per-pixel likelihood for key points locations us-

ng powerful convolutional neural networks (CNNs). Recently, Wei

t al. [6] , Newell et al. [7] improves isolated detection based meth-

ds by multi-stage prediction mechanism, where predictions pro-
∗ Corresponding authors. 

E-mail addresses: weixs.gm@gmail.com (X.-S. Wei), nsang@hust.edu.cn (N. Sang). 

i  

f  

s  

f  

ttps://doi.org/10.1016/j.patcog.2020.107410 

031-3203/© 2020 Elsevier Ltd. All rights reserved. 
uced by the previous stage are fed to the next stage to learn the

mage-dependent spatial distribution of key points. However, as

hown in Fig. 1 , these methods are prone to fail in the challeng-

ng cases. One promising way to further improve the localization

erformance is to exploit the structural relationships between key

oints. Some works based on probabilistic graph model [8,9] are

roposed to learn typical spatial relationships between key points.

owever the feature correlation between key points is ignored. 

In this paper, based on powerful graph convolutional networks,

e propose a Pose Graph Convolutional Network (PGCN) to cap-

ure the structural relationships between key points for pose es-

imation. Specifically, our PGCN represents the node (key points)

eature description by a 3-D tensor consisting of multiple 2-D fea-

ure maps to retain accurate localization information, and builds

 directed graph over these key points representations to explic-

tly model their correlations later. Each layer of PGCN first trans-

orms the input key points feature maps into a higher-level feature

pace by convolutions, and then employs attention mechanisms to

ocus on crucial edges (structured information) between key points

https://doi.org/10.1016/j.patcog.2020.107410
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2020.107410&domain=pdf
mailto:weixs.gm@gmail.com
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Fig. 1. Pairs of pose predictions obtained by an 8-stack Hourglass network [7] (left) and our PGCN model (right). By capturing and exploiting structure of human body, our 

model generates more accurate results. 
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which vary with input poses, type of key points and spatial loca-

tions. A multi-layer PGCN is stacked to generate a set of structure-

aware key point representations which encode both structure of

human body and appearance information of key points. These key

point representations are used to predict key point heat maps

which indicate the localization of each key point. Furthermore,

we develop two types of PGCN modules, namely the Local PGCN

(L-PGCN) module and Non-Local PGCN (NL-PGCN) module. Local

PGCN uses the spatial attention to pass the messages between the

local areas of adjacent key points. The detailed description gener-

ated by L-PGCN is beneficial for accurate localization of the body

key points. Non-Local PGCN employs non-local operations to model

the relationships in spite of the position of key points, which en-

ables the network to effectively handle challenging key points. Ul-

timate aggregation of the heat maps generated by both L-PGCN

and NL-PGCN achieves superior performance. 

The main contributions of this paper are as follows: 

• We propose a novel pose estimation model, which lever-

ages the power of graph convolutional networks to explicitly

model the structured relationships between key points. 

• We design two modules for our model, i.e., Local PGCN and

Non-Local PGCN which are proposed to refine the location of

key points locally, and capture global underlying contextual

information, respectively. 

• We comprehensively evaluate our model on two single-

person pose estimation datasets and a multi-person es-

timation dataset, and our proposed method consistently

achieves superior performance over previous state-of-the-art

approaches. 

The remainder of the paper is organized as follows. In Section 2 ,

we briefly review related literature of pose estimation and graph

convolutional networks. In Section 3 , we elaborately introduce our

proposed PGCN model. Section 4 reports the pose estimation re-

sults of both single- and multi-person benchmark datasets with

also ablation studies. We conclude the paper in Section 5 finally. 

2. Related work 

Our proposed approach is related to previous work on graph

convolutional networks and human pose estimation, which is cat-

egorized as single- and multi-person pose estimation. 

2.1. Single-person pose estimation 

Single-person pose estimation has been an active research area.

Early approaches modeled human body as a set of unary term

and pairwise term. The unary term captured part appearance using

hand-craft feature such as histogram of oriented gradients (HOG)

while pairwise term captured spatial relationships among parts.

The majority of early work [10–12] focused on proposing an strong

pairwise term for highly articulated human body. 

Recently, pose estimation using CNNs has shown superior per-

formance, which can be categorized into two categories: regression

based and detection based. Regression based methods [13] directly

regressed the 2D coordinates of key points from the input image.
evertheless, they are not performing as well as detection based

ethods due to its lack of inherent spatial generalization. 

Detection based methods predicted a heat map for each key

oint and located the key point as the point with the max-

mum value in the map. Early works [8,9,14] focused on ex-

loiting structural constraints between key point locations to

olve the multi-mode problem of heat map representation. Tomp-

on et al. [8] jointly trained a MRF-based spatial model and a

ulti-resolution CNNs. The method of [14] proposed geometri-

al transform kernels to capture the relationships between fea-

ure maps of key points. Yang et al. [9] combined CNNs with the

xpressive deformable mixture of parts. CPM [6] used a sequen-

ial composition of convolutional architectures with large receptive

eld to learning an implicit spatial models. Newell et al. [7] fol-

owed CPM’s framework and designed stacked hourglass network

o rapidly expand the receptive field and consolidate features from

arious scales to best capture the various spatial relationships as-

ociated with the body. 

Since then occlusion and ambiguity became the main diffi-

ulty of single-person pose estimation and various methods [15,16] ,

ased on hourglass network, were proposed to further model and

xploit the relations between key points. Chen et al. [16] trained

he generator (pose estimation network) in an adversarial man-

er against the discriminator. Tang et al. [15] introduced Deeply

earned Compositional Model (DLCM) to learn the compositional-

ty of human bodies. However, more should be done to model and

xploit the priors of the human body structure in pose estimation.

.2. Multi-person pose estimation 

Multi-person pose estimation, which involves simultaneously

etecting people and localizing their key points, has been attract-

ng intensive interests in both academia and industry. Advances in

his topic are often categorized into bottom-up and top-down ap-

roaches. 

.2.1. Bottom-up fashion 

Bottom-up approaches directly detect key points first and as-

ign them to person instances. State-of-art methods use CNN to

redict body parts and group assignments simultaneously, and

hen employ an assignment algorithm to form individual skeletons.

eepCut [17] used Integer Linear Program (ILP) to select and la-

el body part candidates, and partitioned them into person clus-

ers. Cao et al. [18] presented Part Affinity Fields (PAFs) and used

ungarian bipartite matching algorithm to efficiently associate

ey points with individuals in the image. Li et al. [19] improves

AFs [18] by parsing the poses with bounding box constraints in

 top-down manner. Kocabas et al. [20] used a multi-task model

o simultaneously produce score maps and person detection re-

ults, and then used a Pose Residual Network (PRN) to group the

andidate key points to different people. PoseAE [21] output an

ssociative embedding to identify key points from the same per-

on. Zhao et al. [22] improved PoseAE by predicting tag embedding

luster-wise. 
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.2.2. Top-down fashion 

Top-down approaches interpret the process of detecting key

oints as sequentially performing person detection and single-

erson pose estimation. Papandreou et al. [23] used ResNet with

ilated convolutions and predicted both key points heat map and

ffset output, which were aggregated by Hough voting to pro-

uce highly localized activation maps. MASK RCNN [24] firstly

redicted person box and appended a key point head on ROI

ligned feature maps to generate a one-hot mask for each key

oints. RMPE [25] proposed a symmetric spatial transformer net-

ork (SSTN) to handle inaccurate bounding box and introduced a

arametric NMS to delete redundant detection. CPN [26] proposed

y Chen et al. combined GlobalNet, which was a feature pyramid

etwork to handle easy key points, with RefineNet to explicitly

andling the hard key points by integrating all levels of feature

epresentations from the GlobalNet together with an online hard

ey point mining loss. Xiao et al. [27] proposed a simple model

hich simply added a few de-convolution layers over the last con-

olution stage in the ResNet and achieve state-of-art performance. 

.3. Graph convolutional network 

There is an increasing interest in generalizing convolutions to

he graph domain. Advances in this direction are often categorized

s spectral approaches and non-spectral approaches. Spectral ap-

roaches [28] work with a spectral representation of the graphs.

he convolution operation was defined in the Fourier domain by

omputing the eigendecomposition of the graph Laplacian. Non-

pectral approaches defined convolutions directly on the graph, op-

rating on spatially close neighbors. Hamilton et al. [29] proposed

he GraphSAGE which generated embeddings by sampling and ag-

regating features from local neighborhood nodes. Recently, graph

onvolutional networks were explored in a wide range of area such

s image classification [30] , text classification [31] , traffic forecast-

ng [32] and emotion distribution learning [33] . Specifically, Chen

t al. [30] built a directed graph where each node corresponds to

n object labels and took the word embeddings of nodes as in-

ut for predicting the classifier of different categories. Yao et al.

31] regarded the documents and words as nodes and used the

ext GCN to learning embeddings of words and documents. Zhang

t al. [32] represented roads and intersctions as nodes and took the

ummation of the taxi flow in previous six internals of nodes as in-

ut to predict the taxi flow in next internals. He and Jin [33] built

 directed graph between different emotions to capture the co-

ppearance correlation. 

. Proposed method 

An overview of the proposed framework is illustrated in Fig. 2 .

n this section, we recap the original graph convolutional networks

nd then elaborate our PGCN for structure-aware pose estimation.

urthermore we describe the two major components in our model,

.e., Local PGCN module and Non-Local PGCN module. The former

ocuses on the local areas of adjacent nodes feature maps to refine

he location of key points, while later captures the feature correla-

ion in spite of the position of key points which enables the net-

ork to efficiently associate challenging key points. 

.1. Graph convolution network recap 

Graph Convolutional Networks (GCNs) were introduced

n [34] to perform semi-supervised classification on graph-

tructured data. The essential idea is to update the node represen-

ations by propagating information between nodes. 

Different from standard convolutional operations, the goal of

CNs is to learn a function f l ( · ) on a graph G which takes an adja-
ency matrix A ∈ R 

n ×n and a feature description z l u ∈ R 

d for every

ode u at l th layer as inputs. Let z l denote the n × d feature ma-

rix obtained by stacking together all the node feature description

f the graph G. n is the number of nodes and d is the dimension

f features. Then it produces a node-level output z l+1 
u ∈ R 

d ′ for ev-

ry node u . Every neural network layer can then be written as a

onlinear function: 

 

l+1 = f l ( z l , A ) . (1)

pecifically, [34] introduced a sophisticated form of a layer-wise

ropagation rule which update the set of features z l u by two steps.

irstly a linear transformation T l (·) , parametrized by a weight

atrix �l ∈ R 

d ′ ×d , is applied to transform current feature into a

igher-level features b l u ∈ R 

d ′ and then the normalized adjacency

atrix ˆ A is used to aggregate information from its neighborhood

 u . Formally, node features is updated as: 

 

l 
u = T l ( z l u ;�l 

) = �l 
z l u , (2)

 

l+1 
u = σ

( ∑ 

v ∈G 
ˆ A u, v b 

l 
v 

) 

, (3) 

here σ ( · ) denotes a nonlinear function such as ReLU [35] . Thus,

e can learn and model the complex inter-relationships of the

odes by stacking multiple graph convolution layers. 

.2. Local PGCN 

In this section, we design a new GCN namely PGCN for pose

stimation. Intuitively, each node in G represents a key point and

ach edge connects two adjacent key points. Fig. 5 illustrates the

atural compositional model of a human body. 

Since human pose estimation requires accurate localization of

ody key points, the input key point feature description of our

GCN is a set of feature maps Z 

0 
u ∈ R 

H×W ×C , which are generated

y backbone network, to retain accurate spatial information. H, W

nd C denote the height, width and number of channels of Z 

0 
u re-

pectively. For the output, we predict a new set of structure-aware

ey point representations Z 

L 
u ∈ R 

H×W ×C which encode both appear-

nce information of specific key points and structure of human

ody. L is the number of PGCN layer. L = 2 is used by default un-

ess otherwise noted. 

Consequently, function T l applied to each node is naturally im-

lemented by a convolutional operation. Note that transformation

unction on each node is not shared. The reason is that different

onvolutions for different nodes allow the PGCN to capture more

ccurate structural information from various human pose when

 large amount of training data with the same graph structure

re available. Formally, transformation T l u for each node u can be

ewritten: 

 

l 
u = T l u 

(
Z 

l 
u ;�l 

u 

)
= �l 

u ∗ Z 

l 
u , (4)

here “∗′′ denotes convolution, B 

l 
u ∈ R 

H×W ×C ′ is the output of T l u 

nd �l 
u is the convolution weight of node u . In all the experiments,

e set C = C ′ = 16 . 

After transformation, directly aggregating information with the

ormalized adjacency matrix ˆ A will cause several problem [ 50 ].

n the one hand, relationships between key points vary as the in-

ut pose changes. For example, relationship between a visible key

oint and a occluded key point is different from the one between

wo visible key points. In the other hand, different key points

eed different information from its neighborhoods. Some easy key

oints like eyes should be influenced less by its neighborhood than

he hard one such as wrists and ankles. Furthermore, relationships

f nodes features at different positions are also varied. 
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Fig. 2. Overall framework of our proposed model for human pose estimation. The input images are fed to conventional CNNs to obtain the key points representations 

each of which is a feature map Z 0 u ∈ R H×W×C . H, W and C are the height, width and number of channels of Z 0 u respectively. Then we build a directed graph over these key 

point representations to explicitly model their relationships. Based on the graph, two parallel multi-layer Pose Graph Convolutional Network (PGCN) modules are learned to 

propagate information between different key points and further exploit the key point dependency. Specifically, Local PGCN (L-PGCN) module captures the feature correlation 

between key points by focusing on local receptive field to refine the location of key points, while Non-Local PGCN (NL-PGCN) module exploits the long-range relationships 

via non-local operation to associate challenging key points. In consequence, both PGCN modules generate refined key point representations which encode both structure of 

human body and appearance information of key points. Two sets of heat maps are generated via applying 3 × 3 convolutions on the feature maps and then merged together 

to get our final predictions. 
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For above considerations, we design a attention based aggre-

gation function to focus on crucial edges (structured information)

between nodes (key points). Specifically, we perform a convolu-

tion with ReLU nonlinearity to generate an attention map S u, v ∈
R 

H×W ×1 : 

S l u, v = σ ( att l u, v ∗ concate (B 

l 
u , B 

l 
v )) , (5)

where att l u, v denotes the convolution filters and N u denotes the

adjacent key point set of key point u . S l u, v indicates the importance

of node v to node u at every positions. Here, att l u, v is specific for

each ( u, v ). The layer-wise propagation rule is illustrated Fig. 3 (a). 

Once obtained, attention map is used to generate a linear com-

bination of the feature map corresponding to them, to serve as the

output for each node: 

Z 

l+1 
u = 

∑ 

v ∈ N u 
S l u, v � B 

l 
v , (6)

where “�′′ represents the channel-wise Hadamard matrix prod-

uct operation. Note that N u contains node u itself. Specifically, K

independent attention mechanisms execute the transformation of

Eqs. (5) and (6) , and then their features are concatenated, result-
ng in the following output feature representation: 

 

l+1 
u = concate 

( ∑ 

v ∈ N u 
S l, 1 u, v B 

l, 1 
v , . . . , 

∑ 

v ∈ N u 
S l,k u, v B 

l,k 
v 

) 

, (7)

 

l,k 
u, v = σ ( att u, v ∗ concate (B 

l,k 
u , B 

l,k 
v )) , (8)

here we cut the B 

l 
v into K slices and B 

l,k 
v ∈ R 

H×W × C 
K is the k th

lice of B 

l 
v . S l,k u, v is the attention map computed by k th attention

echanism. The aggregation process based on multi-head mecha-

ism is illustrated in Fig. 3 (b). In all our experiments, we set K = 2 .

By focusing on the local receptive field, PGCN mentioned above

ocuses on the relationships between the local areas from the same

osition of different feature maps. Therefore, we named it as Local

GCN (L-PGCN). 

.3. Non-local PGCN 

In this section, we introduce another type of PGCN which fo-

uses on capturing long-range relationships between key points by

sing non-local operation [36] between feature maps of nodes. For

ode u and its neighborhood v , the node features Z 

l 
u and Z 

l 
v are



Y. Bin, Z.-M. Chen and X.-S. Wei et al. / Pattern Recognition 106 (2020) 107410 5 

Fig. 3. (a) Layer-wise propagation rule of Local PGCN with single-head attention. Node u is updated by attending over itself and its neighbor v . (b) Illustration of multi-head 

attention (with K = 2 heads) by node u on its adjacent node v . Different colors denote independent attention computations. The aggregated features from each head are 

concatenated to obtain Z l+1 
u . “�′′ denotes the channel-wise Hadamard matrix product. “�′′ is element-wise addition. 

Fig. 4. Layer-wise propagation rule of Non-Local PGCN. “�′′ denotes matrix multi- 

plication. “�′′ is element-wise addition. 
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Fig. 5. Natural compositional model of a human body originally presented by (a) 

MPII dataset and (b) COCO dataset. 
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rst transformed into two feature space θ l 
u (·) , φl 

v (·) respectively to

alculate the attention βu, v ∈ R 

H W ×H W : 

u, v = 

1 

HW 

θ l 
u (Z 

l 
u ) φ

l 
v (Z 

l 
v ) 

� , (9)

here each element of βu, v denoted as βu, v ( j, i ) indicates the ex-

ent to which the model attends to the i th location of node v when

enerates the j th feature of node u . Then the output of node u is

 

l+1 
u ∈ R 

H×W ×C : 

 

l+1 
u = Z 

l 
u + ϕ 

l 
u 

( ∑ 

v ∈ N u 
βu, v γ

l 
v ( Z 

l 
v ) 

) 

, (10)

here θ l 
u (·) , φl 

v (·) , γ l 
v (·) and ϕ 

l 
u (·) are 3 × 3 convolutions. Here

ulti-head attention is not used. Due to non-local operation, we

ame this PGCN as Non-Local PGCN (NL-PGCN). The layer-wise

ropagation rule is illustrated in Fig. 4 . 

.4. Learning 

As shown in Fig. 2 , The overall model employs a Local PGCN

odule and a Non-Local PGCN module in parallel to capture lo-

al and long-range relationships between key points. 3 × 3 con-

olutions are applied on output feature maps of every nodes (key

oints) to generate the heat maps. We denote the heat maps gen-

rated by L-PGCN and NL-PGCN as P 

L 
u and P 

NL 
u respectively. Each of

hem undergoes a 5 × 5 convolutions and are then added together.
he final heat map P u is generated by applying another 3 × 3 con-

olutions on the added feature. 

 u = f con v 3 ×3 

(
f con v 5 ×5 (P 

L 
u ) + f con v 5 ×5 (P 

NL 
u ) 

)
. (11) 

he � 2 loss is enforced to penalize the difference between pre-

icted heat maps and ground-truth heat maps: 

 m 

= 

∑ 

u ∈G 
|| P 

L 
u − G u || 2 + || P 

NL 
u − G u || 2 + || P u − G u || 2 , (12)

here G u represents the ground-truth heat map for key point u . 

In standard dataset, the ground-truth poses are provided as

he key points locations. Denote the ground-truth locations of key

oint u by ( x u , y u ). Then the ground-truth heat map G u of key

oint u is generated by using a 2D Gaussian centered at ( x u , y u ). 

.5. Backbone 

In order to prove the generality of our PGCN model, we

lace it on top of two different backbone networks. The one is

esNet [37] based network, the other is widely used stacked hour-

lass network [7] . 

.5.1. ResNet 

ResNet [37] is the most common backbone network for image

eature extraction. Here, we describe our backbone network struc-

ure based on the ResNet [37] . We denote the feature activations
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Fig. 6. Statistics of (a) accuracy, (b) number of parameters, and (c) computational complexity in terms of GFLOPs on three models, i.e., Hourglass, PRM, our model. 

Fig. 7. Feature maps of (a) right wrist, (b) right elbow before spatial attention produced by L-PGCN. Feature maps of right elbow are activated at the location of right wrist, 

thus information could be propagated from right elbow to right wrist. (c) Attention map from right wrist to right elbow. (d) Feature maps of right elbow after weighted by 

the attention map (c). Crucial information from right elbow to right wrist is attended. 

Fig. 8. Comparisons with different depths of PGCN in our mode on (a) MPII validation set and (b) COCO val2017 dataset. 
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output by each stage’s last residual block as { C 2, C 3, C 4, C 5} re-

spectively. These features are either too coarse to localization or

too low-level to recognition. Thus a U-shape structure is integrated

to produce a single high-level feature maps of a fine resolution

on which the predictions are to be made. Although FPN further

improves the U-shape structure with deeply supervised informa-

tion on detection task, we found it is useless or even harmful for

pose estimation. Therefore, we apply a U-shape structure for pose

estimation. Specifically, bilinear upsampling followed by a 1 × 1

convolution is used to upsample spatially coarse but semantically

strong feature maps from higher pyramid levels in top-down path-

way. Then features from bottom-up and top-down pathways are

merged via lateral connections which are 1 × 1 convolutions. Once

obtained, the final feature maps are used to generate initial feature

description Z 

0 of each key point which is then fed into our L-PGCN

and NL-PGCN modules. 

3.5.2. Hourglass 

The 8-stack Hourglass network is a widely used network frame-

work in single-human pose estimation. In each hourglass stack,

features are pooled down to a very low resolution, then they are

upsampled and combined with high-resolution features. This struc-

ture is repeated for several times to gradually capture more global
epresentations. Equipped with our proposed PGCN, state-of-the-

rt results is achieved on the pose estimation benchmark datasets.

. Experiments 

In this section, we first describe empirical settings with imple-

entation details. Then, we report the comparison results on both

ingle- and multi-person benchmark datasets. In the following, ab-

ation studies and visualization analyses are presented. 

.1. Empirical settings 

Datasets, evaluation metrics and implementation details are

resented in this section. 

.1.1. Datasets and evaluation protocols 

For single-person pose estimation, we conduct experiments on

he MPII [38] and extended LSP [39] datasets. The extended LSP

ataset [39] consists of 11k training images and 1k testing images

f mostly sports people. The images have been scaled such that the

ost prominent person is roughly 150 pixels in length. Each image

as been annotated with 14 key point locations. Left and right key

oints are consistently labeled from a person-centric viewpoint.
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Fig. 9. (a) Heat map on MPII valid set produced by the ResNet-50 baseline, ResNet-50+L-PGCN and Ground-Truth. (b) Heat map on MPII valid set produced by the ResNet-50 

baseline, ResNet-50+NL-PGCN and Ground-Truth. 
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he MPII Human Pose dataset [38] is a benchmark for evaluation

f articulated human pose estimation. The dataset includes around

5k images containing over 40k people with annotated body key

oints (28k training and 11k testing). Following [7] , 3k samples are

aken as a validation set to tune the hyper-parameters. For these

wo datasets, standard Percentage of Correct Key points (PCK) met-

ic is used for evaluation. It reports the percentage of key points

hat fall into a normalized distance of the ground-truth. For LSP,

istance is normalized by torso size, and for MPII, distance is nor-

alized by head size. MPII evaluation metric is referred to PCKh. 

For multi-person pose estimation, the COCO Key point Chal-

enge [40] requires localization of multi-person key points in chal-

enging uncontrolled conditions. The key point task involves simul-

aneously detecting people and localizing their key points (per-

on locations are not given at test time). The COCO train, valida-

ion, and test sets contain more than 200k images and 250k per-

on instances labeled with key points. 150k instances of them are

ublicly available for training and validation. Our models are only

rained on COCO train2017 dataset (includes 57k images and 150k

erson instances) with no extra data involved and validated on the

al2017 set (includes 50 0 0 images). The COCO evaluation defines

he object key point similarity (OKS) which plays the same role

s the IoU. It is calculated from the Euclidean distance between

redicted points and ground-truth points normalized by scale of

he person and variation of human annotations. Then the mean av-

rage precision (AP) over 10 OKS thresholds as main competition

etric. 

.1.2. Implementation details 

Our network is implemented by using the open-source library

yTorch. For experimental details, we employ Adam [41] with a

earning rate 0.001 as the network optimizer. We drop the learn-

ng rate by a factor of 10 at the 90th and 110th epochs. Training

nds at 140 epochs. The ResNet backbone network is initialized

ith weight of public-released ImageNet [42] pre-trained model

nd the rest of our model is randomly initialized. 

For the Non-Local PGCN, we do not obtain the attention map

u, v ∈ R 

H W ×H W directly, which significantly reduces the computa-

ional complexity. Layer-wise propagation rule of Non-Local PGCN

an be written as: 

 

l+1 
u = Z 

l 
u + ϕ 

l 
u 

( ∑ 

v ∈ N u 

1 

HW 

θ l 
u (Z 

l 
u ) φ

l 
v (Z 

l 
v ) 

� γ l 
v ( Z 

l 
v ) 

) 

, (13)
here θ l 
u (Z 

l 
u ) , φ

l 
v (Z 

l 
v ) , γ

l 
v ( Z 

l 
v ) ∈ R 

HW ×C are the transformed feature

aps. We implement Eq. (13) by fist calculating Kernel v ∈ R 

C×C : 

ernel v = 

1 

HW 

φ l 
v (Z 

l 
v ) 

� γ l 
v ( Z 

l 
v ) . (14)

hen, Eq. (13) can be rewritten as: 

 

l+1 
u = Z 

l 
u + ϕ 

l 
u 

( 

θ l 
u (Z 

l 
u ) 

∑ 

v ∈ N u 
Kernel v 

) 

. (15)

herefore, each layer Non-Local PGCN contains 2 J matrix multi-

lication and each matrix multiplication requires HWC 2 FLOPs. J

s the number of key points. For the MPII dataset, we have H =
 4 , W = 6 4 , C = 16 and J = 16 . The matrix multiplication in each

ayer Non-local PGCN requires 2 JHW C 2 = 0 . 031 GFLOPs, which is

 slight computational burden. 

MPII and LSP: For MPII, the scale and position are provided. We

rst utilize these value to crop the image around the target person

nd then resize the cropped image to 256 × 256. Data augmenta-

ion includes random flip, random rotation ( −30, 30) and random

cale (0.75, 1.25). Following [43] , we estimate the scale and posi-

ion according to key point positions or image sizes for LSP dataset.

or the LSP test set, we perform similar resizing and cropping (or

adding), but simply use the image center as the body position,

nd estimate the body scale by the image size. The compositional

odel of the human body originally presented by MPII and LSP is

hown in Fig. 5 (a). 

Testing is conducted on six-scale image pyramids with flipping

here scale ranges from 0.8 to 1.3 with step of 0.1. For each scale,

e run both original input and a flipped version of it and average

he heat maps together. Then we warp the heat maps of each scale

o original image size and average them to get final heat maps. A

uarter of a pixel offset in the direction from the highest response

o its next highest neighbor is used to obtain the final location of

he key points. 

MSCOCO: Following [26] , Xiao et al. [27] , each ground-truth hu-

an box is extended to fixed aspect ratio, e.g., height : width = 4

 3 and enlarged to contain more context by a rescale factor 1.25.

hen the resulting box is cropped from image without distorting

mage aspect ratio and resized to a fixed resolution. The default

esolution is 256 : 192. After cropping from images, we apply ran-

om flip, random rotation (-40, 40) and random scale (0.7, 1.3). The

atural compositional model of a human body originally presented

y COCO is shown in Fig. 5 (b). 
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Fig. 10. Prediction samples on the MPII test set produced by different networks, i.e., ResNet-50, ResNet-50-Ours, Hourglass, Hourglass-Ours. 
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We use the human detection results provided by Chen et al.

[26] , which achieves detection AP 55.3 for human category in

COCO val2017. We also predict the pose of the corresponding

flipped image and average the heat maps to get the final predic-

tion. To improve performance at high precision thresholds the pre-

diction is offset by a quarter of a pixel in the direction of its next

highest neighbor before transforming back to the original coordi-

nate space of the image. 

4.2. Main results 

We report the empirical results and comparisons on both

single-person and multi-person pose estimation benchmark

datasets. 

4.2.1. Single-person pose estimation 

Results on the MPII dataset: Table 1 summarizes the MPII evalua-

tion results. Ours-Hourglass and Ours-ResNet-50 denote a 8-staked

Hourglass backbone and a ResNet-50 based backbone network

combined with our L&NL-PGCN model. They are trained on all the

MPII training set. We can observe that Ours-Hourglass achieves

92.4% PCKh score at threshold of 0.5, which is the new state-of-

the-art result. In particular, it achieves 1.9% and 2.5% improvements

on wrist and elbow which are considered as the most challeng-

ing key points to be detected. It is noteworthy that Ours-ResNet-

50 performs better than many deeper network which demonstrates

effectiveness of our L&NL-PGCN model. 
For model complexity, as shown in Fig. 6 , PRM [43] model in-

reases the number of parameters by 1.6% from 23.7 M to 24.1 M

iven an 8-stacked Hourglass network. while ours only introduces

.8% extra parameters. In the other hand, GFLOPS of our model is

lso 7.1% less than PRM for a 256 × 256 input RGB image. Our

odel is both effective and efficient. 

Results on the LSP dataset: Table 2 presents the PCK scores at

he threshold of 0.2. We follow previous methods [6,43] to train

ur model by adding the MPII training set to the extended LSP

raining set with person-centric annotations. Our hourglass based

odel outperforms state-of-art methods by a large margin. 

.2.2. Multi-person pose estimation 

Results on COCO val2017: Table 3 compares our model with

ourglass [7] , CPN [26] and SIM [27] on COCO val2017 dataset. All

he methods use standard top-down paradigm which sequentially

erforms human box detection and single-person pose estimation.

ur model, Hourglass [7] and CPN [26] use the same human de-

ector with the person detection AP 55.3% which is slightly lower

han SIM’s 56.4%. 

Compared with Hourglass [7,26] , our model achieves an im-

rovement of 4.2% in AP. Both methods use an input size

56 × 192. CPN [26] , SIM [27] and our model use the same

ackbone of ResNet-50. Our model outperforms CPN [26] and

IM [27] by 1.7% and 0.7% for input size 256 × 192 respec-

ively. When input size is 384 × 288, our model is better than

PN [26] and SIM [27] by 1.3% and 0.7% AP. 
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Table 1 

Comparisons of PCKh@0.5 scores on the MPII testing set. 

Method Head Sho. Elb. Wri. Hip Knee Ank. Mean 

Tompson et al. [8] 95.8 90.3 80.5 74.3 77.6 69.7 62.8 79.6 

Tompson et al. [44] 96.1 91.9 83.9 77.8 80.9 72.3 64.8 82.0 

Pishchulin et al. [17] 94.1 90.2 83.4 77.3 82.6 75.7 68.6 82.4 

Lifshitz et al. [45] 97.8 93.3 85.7 80.4 85.3 76.6 70.2 85.0 

Rafi et al. [46] 97.2 93.9 86.4 81.3 86.8 80.6 73.4 86.3 

Insafutdinov et al. [47] 96.8 95.2 89.3 84.4 88.4 83.4 78.0 88.5 

Wei et al. [6] 97.8 95.0 88.7 84.0 88.4 82.8 79.4 88.5 

Bulat and Tzimiropoulos [48] 97.9 95.1 89.9 85.3 89.4 85.7 81.7 89.7 

Chu et al. [49] 98.5 96.3 91.9 88.1 90.6 88.0 85.0 91.5 

Chen et al. [16] 98.1 96.5 92.5 88.5 90.2 89.6 86.0 91.9 

Yang et al. [43] 98.5 96.7 92.5 88.7 91.1 88.6 86.0 92.0 

Newell et al. [7] 98.2 96.3 91.2 87.1 90.1 87.4 83.6 90.9 

ResNet-50-Ours 97.9 96.1 91.5 86.8 90.7 87.6 84.3 91.1 

Hourglass-Ours 98.0 96.9 92.7 89.0 91.8 89.4 86.1 92.4 

Table 2 

Comparisons of PCK@0.2 scores on the LSP testing set. 

Method Head Sho. Elb. Wri. Hip Knee Ank. Mean 

Lifshitz et al. [45] 96.8 89.0 82.7 79.1 90.9 86.0 82.5 86.7 

Pishchulin et al. [17] 97.0 91.0 83.8 78.1 91.0 86.7 82.0 87.1 

Insafutdinov et al. [47] 97.4 92.7 87.5 84.4 91.5 89.9 87.2 90.1 

Wei et al. [6] 97.8 92.5 87.0 83.9 91.5 90.8 89.9 90.5 

Bulat and Tzimiropoulos [48] 97.2 92.1 88.1 85.2 92.2 91.4 88.7 90.7 

Chu et al. [49] 98.1 93.7 89.3 86.9 93.4 94.0 92.5 92.6 

Chen et al. [16] 98.5 94.0 89.8 87.5 93.9 94.1 93.0 93.1 

Yang et al. [43] 98.3 94.5 92.2 88.9 94.4 95.0 93.7 93.9 

Tang et al. [15] 98.3 95.9 93.5 90.7 95.0 96.6 95.7 95.1 

ResNet-50-Ours 98.6 95.6 94.8 92.9 94.6 96.0 94.7 95.4 

Hourglass-Ours 98.6 96.2 95.3 95.1 95.2 96.3 96.0 96.1 

Table 3 

Comparison with Hourglass [7] , CPN [26] and SIM [27] on COCO val2017 dataset. Their results are 

cited from [26,27] . 

Method Backbone Input size AP HumanBox Params GFLOPs AP 

8stage Hourglass [7] – 256 × 192 55.3 25.1M 14.3 66.9 

CPN [26] ResNet-50 256 × 192 55.3 27.0M 6.20 69.4 

CPN [26] ResNet-50 384 × 288 55.3 27.0M 13.9 71.6 

SIM [27] ResNet-50 256 × 192 56.4 34.0M 8.9 70.4 

SIM [27] ResNet-50 384 × 288 56.4 34.0M 20.0 72.2 

ResNet-50-Ours ResNet-50 256 × 192 55.3 24.8M 4.6 69.5 

Ours ResNet-50 256 × 192 55.3 25.2M 5.7 71.1 

Ours ResNet-50 384 × 288 55.3 25.2M 12.9 72.9 
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.3. Ablation studies 

In this section, we conduct the ablation studies both on single-

nd multi-person pose estimation task, using the validation set of

PII and COCO datasets respectively. A ResNet-50 based U-shape

etwork is used as the baseline model which achieves a PCKh

core at 87.8% on MPII validation set and an AP of 69.5% on COCO

al2017 dataset. The overall results are shown in Table 5 . Based on

he baseline network, we analyze each component of our model,

.e., the local PGCN (L-PGCN) module and the Non-Local PGCN (NL-

GCN) module, by comparing the PCKh score at threshold 0.5 on

PII validation set and AP on COCO val2017 dataset. 

.3.1. Local PGCN 

We first evaluate the effect of Local PGCN (L-PGCN) module. By

dding our L-PGCN module at the end of the baseline model, we

et an PCKh score at 88.6%, which is about 0.8% higher than the

aseline model. The AP of the baseline model is improved from

9.5% to 70.6%. The results validate the effectiveness of our L-PGCN

odule. 
.3.2. Non-local PGCN 

We are also interested in how Non-Local PGCN (NL-PGCN) mod-

le perform solely. To this end, we conduct an experiment by

dding a NL-PGCN module at the end of the baseline model. The

CKh score and AP here is 88.6% and 70.6%, which is 0.8% improve-

ent on PCKh score and 1.2% improvement on AP brought by NL-

GCN. 

.3.3. L & NL-PGCN 

While L-PGCN module pays attention to correlation in local

rea, the NL-PGCN module focus on long-range relations. Then our

nal PGCN model (L&NL-PGCN) employs a NL-PGCN module and a

-PGCN module in parallel on top of the baseline model. This im-

roves PCKh score from 88.7% to 88.9% and AP from 70.7% to 71.1%,

hich indicates that our L-PGCN module and NL-PGCN module are

omplementary with each other. 

We also conduct an experiment to explore relationship between

he number of PGCN layer and the system performance. As shown

n Fig. 8 , when the number of graph convolution layers increases,

he pose estimation performance increases and saturates quickly

t L = 3 (both L-PGCN and NL-PGCN). On MPII dataset, PCKh score
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Fig. 11. Examples of estimated poses on the MPII test set and the LSP test set. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 

Ablation study of the adjacent matrix on MPII validation set. 

Method Head Sho. Elb. Wri. Hip Knee Ank. Mean 

L-PGCN-I 96.1 95.0 88.4 83.0 87.9 83.9 78.7 88.2 

L-PGCN 96.3 95.2 89.1 83.9 88.6 84.5 79.9 88.7 
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increases 0.6% and 0.3% when a Local pose graph convolution layer

is added incrementally upon our ResNet-50 baseline. Then perfor-

mance begins to drop at L = 3. NL-PGCN has almost the same be-

havior. The similar trends are found on COCO dataset. The tiny dif-

ference is caused by the slightly different graph of human body

structure presented by MPII and COCO datasets. It is indicated that

relationships between directly adjacent key points are of most im-

portance. The performance drop with increasing number of layers

indicates that it is hard to capture and exploit relations between

key points in distance. 

The motivation of our L-PGCN module is to capture the struc-

tural relationships between body key points by propagating infor-

mation between the local areas of adjacent key points. In order to

clearly explain the mechanism of L-PGCN and validate its effective-

ness, we visualize the feature maps and attention maps of L-PGCN

produced by ResNet-50 + L&NL-PGCN model. 

Each layer of L-PGCN first transforms the input key points fea-

ture maps into a higher-level feature space by convolutions, which

contains both information of the key point itself and its adjacent

key points. As shown in the Fig. 7 (a,b), feature maps of right el-

bow are activated at the location of both right wrist and right el-

bow. As a result, right wrist could take information from feature

maps of right elbow. 

Then, L-PGCN generates a spatial attention map to focus on cru-

cial information between key points. As shown in the Fig. 7 (c),

the attention map from right wrist to right elbow is activated

around the location of right wrist. Furthermore, weighted by

the attention map, feature maps of right elbow are converted

to highly localized feature maps of right wrist. These qualitative

results demonstrate that L-PGCN learns to propagate structural
nformation between adjacent key point for accurate key point

ocalization. 

We also conduct experiments to investigate the importance of

tructural relationships between key points on MPII validation set.

he L-PGCN model is used as the baseline, which achieves a PCKh

core at 88.7% on MPII validation set. By remove the feature aggre-

ation process between key points, L-PGCN model is degraded to

rouped convolution with spatial attention, which has almost the

ame capacity as L-PGCN. We call this degraded model as L-PGCN-

, for its adjacent matrix is an identity matrix. As shown in Table 4 ,

-PGCN-I gets an PCKh score at 88.2%, which is about 0.5% lower

han the baseline L-PGCN. The results validate that our L-PGCN im-

roves the localization performance by modeling structural rela-

ionships between key points. 

.4. Qualitative results 

Fig. 9 (a) visualizes some heat maps produced by the ResNet-50

aseline model, ResNet-50 + L-PGCN model and ground-truth. We

an observe that our L-PGCN predicts more refined heat maps than

he baseline model. Especially when symmetric key points are very

lose or even overlap, L-PGCN refines the heat map by reducing the

mbiguities via utilizing the correlations in the local area. 
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Table 5 

Ablation study on MPII and COCO validation set. 

Model L-PGCN NL-PGCN MPII COCO 

Wri. Ank. Mean AP AR 

ResNet-50 82.6 78.6 87.8 69.5 75.3 

ResNet-50 + L-PGCN � 83.6 79.9 88.7 70.6 76.3 

ResNet-50 + NL-PGCN � 83.3 80.5 88.6 70.7 76.5 

ResNet-50 + L&NL-PGCN � � 83.6 80.8 88.9 71.1 77.0 

Fig. 12. Examples of estimated poses on the COCO test set. 
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Fig. 9 (b) displays some heat maps produced by the ResNet-50

aseline model, ResNet-50 + NL-PGCN model and ground truth. It

s clear to see that our NL-PGCN can associate occluded key points

nd distinguish the symmetric key points which are widely sepa-

ated in space. 

Fig. 10 displays some pose estimation results obtained by the

aseline model and our approach. We observe the baseline model

ay has difficulty in distinguishing objects with similar appear-

nce with limbs (e.g., the exercise bike in { col .3, row .4}), and rea-

oning occluded key points (e.g., the occluded right wrist in { col .3,

ow .2}). Our PGCN model would be great help for resolving the

mbiguities and occlusions by utilizing the feature response of the
 o  
eighborhood key points. Fig. 11 demonstrates the poses predicted

y our model on the MPII test set and the LSP test set. Our model

s robust to extremely difficult cases, e.g., rare poses and cluttered

ackground. More results on COCO test-dev dataset, generated us-

ng our model, are shown in Fig. 12 . 

. Conclusion 

Capturing structured relations between human body key points

s the crucial issue for pose estimation. In this paper, we pro-

osed a novel pose estimation model, which leveraged the power

f graph convolutional networks to explicitly model the structured
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relationships between key points. We built a directed graph be-

tween body key points according to body structure where each

node (key point) was represented by a tensor which was initially

generated by backbone models and attention mechanism was fur-

ther used to focus on crucial edges (structural information). Then,

PGCN mapped this key points graph to a set of structure-aware

key points representations. Furthermore, we designed two modules

for the model, i.e., Local PGCN and Non-Local PGCN which were

proposed to refine the location of key points locally, and capture

global underlying contextual information, respectively. Equipped

with these two modules, both quantitative results and qualitative

visualization validated the effectiveness of our proposed model.

Beyond that, extending the model to simultaneously incorporate

structural information between multiple persons is an interesting

future work. 
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